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Abstract
Recent developments in the immuno-oncology field strongly support a role for the immune system in both the prevention 
and progression of melanoma. Melanoma is a highly immunogenic cancer, including its ability to induce tumour antigen-
specific B cell and antibody responses through largely unknown mechanisms. This review considers likely hypothetical 
mechanisms by which anti-tumour surveillance detects pre-cancerous cells and by which immune (including B cell and 
antibody) responses may be elicited during malignancy. The review further considers potential pro- and anti-tumour func-
tions of B cells and antibodies (including tertiary lymphoid structures) in both the tumour microenvironment and in circu-
lation. Although the vast majority of studies have focused on T cells, recent evidence highlights the important roles of B 
cells in response to malignancy. B cells and antibodies are also discussed in the context of their potential utility as clinical 
biomarkers for various applications (as diagnostic, prognostic, therapeutic efficacy, and toxicity proxies), with a particular 
focus on protein microarray-based antibody detection and quantitation. Although the role of B cells in melanoma is incom-
pletely understood, the measurement of circulating tumour-specific antibodies represents a promising avenue in the search 
for melanoma-relevant biomarkers.

Introduction

Melanoma has been suggested as a model for understanding 
immuno-oncology due to its capacity to evade anti-tumour 
immunity despite being highly immunogenic (Maio 2012). 
It is one of the most aggressive and lethal cancers, and its 
poor prognosis and high mortality necessitate prevention and 
early detection, with recent public health campaigns signifi-
cantly reducing mortality rates (Schadendorf et al. 2015). 
Nonetheless, delayed diagnosis and recurrence are common, 
and multiple investigated therapeutic modalities (including 
surgery, chemotherapy, and radiotherapy) have made little 
impact on the mortality rate of advanced melanoma (Balch 
et al. 2009). This has led to the development of novel anti-
melanoma therapeutics, particularly those leveraging host 

immunity for improved cancer targeting (immunotherapy). 
Despite intense interest, however, anti-melanoma therapeu-
tic vaccines (including those comprising tumour antigens) 
have met with limited success in part due to immune evasion 
mechanisms and intra-tumoural heterogeneity (Vujanovic 
and Butterfield 2007; Andrews et al. 2014). On the other 
hand, immune checkpoint blockade targeting programmed 
cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated 
antigen 4 (CTLA-4) have delivered unmatched clinical suc-
cess. Immune checkpoints are pivotal in dampening immune 
responses as part of tolerance and immune homeostasis 
maintenance, but are exploited by cancer to counteract anti-
tumour immunity (Da Gama Duarte et al. 2018b).

Complicating the effort to develop broadly applicable 
anti-melanoma therapies is the incredible molecular het-
erogeneity of tumours (Kumar et al. 2015). Because muta-
tions accumulate independently in different tumour cells, 
sub-clones exhibit varying capacities for growth, immuno-
genicity, invasion, metastasis, and susceptibility/resistance 
to therapy. Furthermore, the ratios of anti- and pro-tumour 
immune cell subsets present in the tumour microenviron-
ment (TME) and in circulation can contribute to highly het-
erogeneous responses to cancer (Chen and Mellman 2017).

Measuring the extent of immune engagement is of 
potential diagnostic, prognostic, and therapeutic value, and 
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warrants investigation. Although the vast majority of stud-
ies have focused on T cells, recent evidence highlights the 
important roles of B cells and antibodies (Tsou et al. 2016). 
The dynamic balance of B cells and antibodies present in 
the TME and in circulation of melanoma patients influences 
both anti- and pro-tumour functions (Flynn et al. 2017), 
accounting for much of the conflicting evidence regarding 
whether these immune components oppose or favour mela-
noma progression (Tsou et al. 2016).

This review discusses B cell immunology in melanoma, 
including the pro- and anti-melanoma roles of B cells and 
antibodies in the TME and circulation, their detection and 
quantitation, and their potential for use as diagnostic, prog-
nostic, therapeutic efficacy, and toxicity biomarkers. We 
focus on evidence deriving from human studies, due to a 
lack of concordance with murine models.

B cell immunology

Early anti‑tumour immune surveillance

The immune system can efficiently detect and eliminate pre-
cancerous cells in a non-inflammatory manner, before malig-
nant transformation occurs (Swann and Smyth 2007). Early 
surveillance and elimination are performed by a highly spe-
cific division of immune effectors, molecules, and pathways 
(Swann and Smyth 2007), whose identities are dependent on 
the local tissue type. Cutaneous melanoma—the commonest 
form of melanoma—is thought to arise from melanocytes 
of the skin epidermal basal layer (Nishimura 2011; Lo and 
Fisher 2014) and the human epidermis exhibits a special-
ised set of humoral and cellular defences that appear to be 
evolutionarily tuned to the most-commonly encountered 
abnormalities in this tissue compartment.

However, anti-tumour surveillance can fail or elimina-
tion can be incomplete for various reasons and persistent 
pre-cancerous cells can become a chronic inflammatory 
stimulus. Since an ideal inflammatory response acutely 
clears the inciting stimulus to facilitate healing and restora-
tion of homeostasis, and since inflammation can damage 
host tissue, chronic inflammation is, by definition, abnor-
mal. Failure to clear pre-cancerous cells leads to a situation 
in which progressive neoplasia and anti-tumour responses 
significantly influence each other. The ‘immunoediting’ par-
adigm describes this unfolding bi-directional relationship, 
emphasising the paradoxical protective and tumour-sculpt-
ing effects of immunity (Dunn et al. 2004). Immunoediting 
encompasses three possible and sequential (albeit overlap-
ping) phases: elimination, equilibrium, and escape, which 
have been recently reviewed (Da Gama Duarte et al. 2018b).

Over time, heterogeneity of tumour cells, their microen-
vironment, and immune responses also increases, becoming 

progressively less predictable. Relatively predictable anti-
tumour surveillance and elimination mechanisms (conducted 
by pre-existing local sensors and rapid effectors which detect 
early oncogenic changes) differ significantly from the poten-
tial array of immune responses observed in established 
neoplasia, which can encompass the fuller complexity of 
systemically available and infiltrating sensors and delayed 
effectors, including induced adaptive responses. Further-
more, anti-tumour immune responses are only beneficial 
up to a point, beyond which they can become maladaptive. 
Thus, depending on the timing and nature of anti-tumour 
immune responses, they favour either host protection or neo-
plastic progression (De Visser et al. 2006). B cells and their 
soluble products (including antibodies) are involved in all 
stages of these immune responses to oncogenesis/neopla-
sia, from early surveillance through later adaptive responses, 
both beneficial and maladaptive.

Discrimination between normal and tumour cells

Clearly, immune surveillance and subsequent immune mech-
anisms must distinguish between normal and malignant cells 
(Swann and Smyth 2007). Despite central and peripheral tol-
erance mechanisms protecting host antigens against immu-
nogenicity, even early oncogenic events facilitate immune 
recognition of pre-cancerous cells, via mechanisms well 
within normal immune operating parameters.

The pre-cancerous cell itself can respond immunologi-
cally to intracellular stress (Chan et al. 2014), for example, 
undergoing autophagy, inflammasome-mediated production 
of pro-inflammatory cytokines, or heterogeneous modes of 
cell death, some of which are more inflammatory than others 
(Hou et al. 2013; Janssen et al. 2016). Additionally, stress 
can lead to exposure, presentation, or release of host mol-
ecules (‘alarmins’) exhibiting damage/danger-associated 
molecular patterns: cell death, for example, can release 
normally intracellular molecules (i.e. molecules ordinar-
ily shielded from the immune system) into the extracellu-
lar space. Pre-cancerous cells may even expose or express 
specific surface markers which facilitate recognition of 
their status (c.f. phosphatidylserine exposure by apoptotic 
cells). Furthermore, autoantigens can act immunogenically 
in various contexts, including increased level of expression/
abnormal accumulation, encounter in a highly pro-inflam-
matory environment, ectopic expression in or accessing of 
a compartment where the antigen is not normally located 
(including ‘self’ antigens normally masked from immune 
encounter), and some form of alteration (including mutation, 
post-translational modification, misfolding, and aggregation) 
(Zaenker et al. 2016). These types of immunogenic mol-
ecules are all recognisable by innate leukocyte receptors, 
which recognise a broad array of immunogenic molecules, 
including glycolipids. Tumour antigens include unique 
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antigens (generally derived from point mutations) and 
shared antigens (see Table 1). Specific antigens (proteins, 
lipids, carbohydrates, or a combination) are also recognis-
able by innate and adaptive lymphocyte receptors.

Unique antigens are not exhibited by normal cells and 
usually result from mutations in ubiquitously expressed 
genes, with the resultant products representing neoanti-
gens. Melanomas exhibit the highest amount of somatic 
mutations due to UV exposure (Alexandrov et al. 2013), 
and are thereby estimated to have a high neoantigen reper-
toire (Schumacher and Schreiber 2015). In fact, up to 80% of 
melanomas have BRAF or NRAS mutations (Akbani et al. 
2015). As a result, these and other neoantigens such as cyc-
lin-dependent kinase 4 (CDK4) and β-catenin 1 (CTNNB1) 
have been explored as attractive cancer immunotherapy tar-
gets (Lu and Robbins 2016). However, neoantigen-specific 
T cells often recognise unique mutations and epitopes that 
are not shared among patients, leading to costly patient-spe-
cific approaches which may not translate into commercially 
viable therapeutic vaccines (Lu and Robbins 2016). On the 
other hand, shared antigens are expressed by normal cells, 
but are produced in a modified form or in greater quanti-
ties/in ectopic locations by tumours (Vigneron et al. 2013). 
Shared antigens can be further sub-divided into tumour-spe-
cific, differentiation, and overexpressed antigens (Vigneron 
et al. 2013). Of particular importance to melanoma, can-
cer–testis (CT) antigens are categorised as tumour-specific 
antigens with normal expression usually restricted to the 
testis, but which are aberrantly expressed by various cancers 
(Scanlan et al. 2002; Hofmann et al. 2008). As the testis is 
an immune-privileged site, aberrant expression of such anti-
gens by cancer cells typically triggers spontaneous humoral 
immune responses (Scanlan et al. 2004). One such well-
researched CT antigen is New York esophageal squamous 
cell carcinoma 1 (NY-ESO-1, also known as CTAG1), with 
prior studies investigating its use as a therapeutic vaccine 
for melanoma (Davis et al. 2004). Other CT antigens of 

interest include melanoma-associated antigens (MAGE) and 
synovial sarcoma X (SSX) antigens (Barrow et al. 2006). 
CT antigen expression is, however, heterogeneous among 
melanoma patients and within tumours, negatively affect-
ing potential therapeutic efficacy and arguing for improved 
utility of several immunogenic antigens over a single antigen 
(Barrow et al. 2006). In melanoma, differentiation antigens 
are derived from proteins involved in melanin or melano-
some production (Vigneron 2015), and include tyrosinase, 
glycoprotein 100 (gp100), and melanoma-associated anti-
gen recognised by T cells (MART-1) (Barrow et al. 2006). 
However, therapeutically targeting these antigens can lead to 
skin depigmentation, often referred to as vitiligo (Vigneron 
2015). Overexpressed antigens are expressed across a wide 
variety of normal tissues and overexpressed in tumours, 
and include preferentially expressed antigen in melanoma 
(PRAME), p53 protein, and apoptosis protein survivin 
(Vigneron 2015). Although attractive immunotherapy targets 
are available for several tumour types, a high risk of autoim-
mune toxicities is expected due to normal tissue expression 
of target antigen (Vigneron 2015).

Elicitation of cellular and humoral B cell immunity

Early on, pre-existing natural (i.e. constitutive, non-elicited) 
and long-lived antibodies likely play an important role in 
anti-tumour surveillance and responses. However, over 
time, the evolving palette of tumour antigens may elicit new 
antigen-specific B cell responses, with B cells being able 
to infiltrate into and be influenced by the TME. Although 
actual mechanisms of antibody elicitation by tumours 
remain unclear (Tsou et al. 2016), we can hypothesise that 
B cells should be able to detect and respond to malignant 
cells in at least four different ways: innate receptor-based 
detection of stressed cells, pre-existing antigen-specific 
natural/long-lived antibodies, activation of naïve mature 
B cells by T-dependent or -independent antigens locally or 

Table 1  List of commonly reported tumour antigens

This table summarises known unique and shared tumour antigens relevant to melanoma

Molecule Category Description Examples References

Unique antigens Mutational neoantigens Normal genes altered by mutation BRAF, NRAS, CDK4, CTNNB1 Akbani et al. (2015), Lu 
and Robbins (2016), 
and Zaenker et al. 
(2016)

Shared antigens Tumour-specific antigens Restricted normal expression, but 
aberrant expression in tumours

Cancer–testis antigens Scanlan et al. (2002, 
2004), Barrow et al. 
(2006), and Hofmann 
et al. (2008)

Differentiation antigens Derived from proteins involved in 
melanin or melanosome production

Tyrosinase, gp100, MART-1 Vigneron (2015)

Overexpressed antigens Expressed across normal tissues and 
overexpressed in tumours

PRAME, p53, survivin Vigneron (2015)
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in secondary lymphoid organs (SLOs; see Fig. 1), or non-
specific activation of memory B cells in a sufficiently inflam-
matory environment. Regardless of the precise mechanisms, 
cutaneous melanoma does elicit spontaneous anti-tumour 
immune responses (Maire et  al. 2013; Mukherji 2013), 
including antibody responses to lineage-specific differen-
tiation antigens, some CT antigens (including NY-ESO-1), 
and mutational neoantigens (Houghton et al. 2001; Simp-
son et al. 2005; Maio 2012; Lo and Fisher 2014). Indeed, B 
cells specific for true autoantigens do exist even in notionally 
healthy individuals and somatic hypermutation during cer-
tain types of B cell responses to inciting stimuli other than 
the cancer cells can also give rise to cross-reacting autoreac-
tive clones.

While T cells are classically believed to be restricted 
to peptide antigens presented in the context of a major 
histocompatibility complex (MHC), B cells can respond 
to both peptide and carbohydrate antigens via differently 
timed routes to produce differential antibody responses. 
B cells can respond to the same MHC-presented peptides 
which activate T cells (T-dependent antigens): interaction 
of activated  CD4+ T cells with cognate B cells within SLO 
is required for full activation of each (Breitfeld et al. 2000). 
In addition, B cells can also respond to soluble peptide anti-
gens in their native conformation, as well as to soluble non-
peptide (T-independent) antigens, albeit B cell receptors 
(BCRs) more efficiently recognise membrane-bound than 

soluble antigens in vivo (Heesters et al. 2016). Activation 
by T-independent soluble antigens requires either a single 
signal derived from cross-linking of multiple BCR by a 
high-avidity molecule, or two signals derived from simulta-
neous BCR and pattern recognition receptor (PRR) ligation 
(Berkowska et al. 2011). T-independent responses are known 
to occur in the mucosae, splenic marginal zone (Cerutti and 
Rescigno 2008; Weill et al. 2009) and marrow. Activation 
by T-dependent membrane-bound antigens requires two sig-
nals: BCR interaction with antigen-presenting cells (APCs) 
displaying the target antigen (which is then internalised by 
B cells for processing and display as an MHC-II complex), 
followed by interaction with pre-activated cognate  CD4+ 
T cells (Garside et al. 1998; Cyster 1999). The nature of—
and BCR affinity for—the antigen determines the outcome 
of B cell activation: Only APC-displayed peptide antigens 
facilitate B cell interaction with activated cognate  CD4+ T 
cells and thus enable full activation of the former (including 
affinity maturation) (Heesters et al. 2016). A third signal 
(PRR agonisation or provision of APC-derived cytokines) 
(Ruprecht and Lanzavecchia 2006), while not strictly nec-
essary, is often present, and influences the outcome of B 
cell activation: like other lymphocytes, functionally plas-
tic B cells are influenced by microenvironmental cues and 
can adopt B cell effector 1 (Be-1), B cell effector 2 (Be-2), 
or regulatory B cell  (Breg) (Zhang et al. 2015) phenotypes 
(Egbuniwe et al. 2015).

Fig. 1  Mechanisms of B cell activation via antigen recognition. B 
cells may be activated by T-independent or -dependent antigens 
locally or in secondary lymphoid organs. Antigens targeted by B 
cells/antibodies are usually either free or present on cell surfaces 
(i.e. the targeted epitopes are usually hydrophilic and discontinuous). 
Cognate  CD4+ T cells are capable of targeting the same antigen, via 
either distinct or shared epitopes. Various local stimuli (including 
other activated leukocyte types) determine the outcome of B cell acti-

vation. For example, stimulation in the absence of sufficient activat-
ing signals can lead to B cells becoming regulatory, or undergoing 
tolerisation, anergy, or clonal deletion. Successful activation produces 
different B cell phenotypes (e.g. IFNγ-secreting Be-1, IL-4-secreting 
Be-2, or IL-10- and TGFβ-secreting  Breg), and plasmablasts which 
produce different isotypes and subclasses of antibody, with differen-
tial post-translational modification patterns and functions
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As a peripheral tolerance mechanism, not receiving all 
required activating signals leads to the specific lympho-
cyte clone becoming tolerogenic/suppressive or anergic, or 
undergoing clonal deletion. Successful adaptive lymphocyte 
activation, on the other hand, leads to clonal expansion and 
differentiation into effector and memory cells. Activated 
B cells have various functions, including acting as APC, 
secreting cytokines/chemokines, and producing antibodies 
(Egbuniwe et al. 2015). Different B cell sub-populations 
exhibit vastly differing functions: Be-1 produce interferon 
(IFN)-γ, Be-2 produce interleukin (IL)-4, and  Breg produce 
IL-10 and transforming growth factor β (TGFβ) (Fremd 
et al. 2013). Antibody functions relevant to cancer include 
agglutination, receptor neutralisation, complement activa-
tion, opsonisation, and antibody-dependent cell-mediated 
cytotoxicity. Specific effects are dependent on antibody iso-
type, subclass, post-translational modification (e.g. Fc region 
glycosylation) profile, and the activating/inhibitory Fc recep-
tor (FcR) balance expressed on antibody-responsive cells.

Depending on antigen type and BCR affinity, activated B 
cells differentiate into effectors either extra-follicularly or 
within follicular germinal centres (GCs) during induction of 
primary B cell responses. B cells activated by T-independent 
antigens are first to respond (Berkowska et al. 2011), becom-
ing extra-follicular plasmablasts which provide a wave of 
circulating IgM (Lee et al. 2011). SLO-traversing B cells 
with moderate affinity for T-dependent antigens are next 
to respond: CD40-only contact with  CD4+ T cells causes 
these B cells, too, to become extra-follicular plasmablasts, 
which provide the next wave of circulating IgM (Kurosaki 
et al. 2015). Thus, extra-follicular plasmablasts—which have 
not undergone affinity maturation—provide early, transient, 
modest-affinity circulating IgM (Ahmed and Gray 1996; 
Kunkel and Butcher 2003), either from SLO/barrier tis-
sues, or after infiltrating the inflammatory site (Kunkel and 
Butcher 2003).

Finally, SLO-traversing B cells with high affinity for 
T-dependent antigens respond most slowly, because they first 
undergo affinity maturation and class switching within GCs. 
Antigen is taken up by B cells after the APC-B cell synapse 
(Batista et al. 2001) for display to cognate  CD4+ T cells: full 
synapsing (Batista and Neuberger 1998) provides T cell help 
that facilitates B cell transition into follicular plasmablasts. 
These B cells differentiate into GC centrocytes and undergo 
clonal expansion, affinity maturation, and class switching 
from IgM to IgA or IgG (MacLennan 1994; Haynes et al. 
2012; Pennock et al. 2013). At the plasmablast stage, they 
become capable of antibody secretion and cells with sub-
par affinity can undergo another round of affinity maturation 
(Vanderleyden et al. 2014; Roth et al. 2014; Kometani and 
Kurosaki 2015), while sufficient-affinity cells transiently 
provide antibodies from within SLO or at local tissue sites 
(Kometani and Kurosaki 2015; Halliley et al. 2015). Thus, 

follicular GC-derived plasmablasts—which have undergone 
affinity maturation and isotype switching—provide a delayed 
peak of circulating high-affinity IgG days to weeks post-
antigen exposure (Haynes et al. 2012).

B cells likely utilise some or all of the above mechanisms 
in responding to tumour antigens. Because B cell responses 
represent only one facet of the complex and integrated 
immune response, the antibody response may reflect aspects 
of the broader immune response, including concurrent anti-
tumoural  CD8+ T cell responses. Since antibodies and T 
cells do exhibit shared antigen specificity as required for 
provision of mutual help by cognate B and T cells, measur-
ing antibody responses—especially in patients exhibiting a 
clinical benefit, and especially in whom antibody specific-
ity is shared with cytotoxic  CD8+ T cells—may assist in 
identification of a subset of candidate cancer vaccine anti-
gens. Although B and T cells may target shared antigens, 
this occurs via topographically distinct epitopes, although 
these can be partially or completely overlapping (Harris 
et al. 1996). Since most antibodies act in an aqueous envi-
ronment, B cell-targeted epitopes are typically superficial/
free and hydrophilic, as well as usually being discontinu-
ous (non-adjacent amino acid residues brought together by 
protein folding) (Sharon et al. 2014). The MHC-presented 
peptide repertoire, on the other hand, is determined by vari-
ous factors, including antigen availability and degradabil-
ity, protease activity, chaperone and peptide editor/exchange 
catalyst availability and activity, HLA polymorphism (and 
consequent peptide affinity), protein intermediate states, 
and thermodynamic stability of the peptide-MHC complex 
(Wieczorek et al. 2017). Since measurable antibodies shar-
ing peptide antigenic targets with  CD8+ T cells may activate 
cognate antigen-specific  CD8+ T cells, such antibodies may 
represent attractive therapeutic candidates.

B cells in the tumour microenvironment

Study of the TME enables characterisation of factors derived 
from leukocytes, other local cell types, and tumour cells, and 
this can provide critical prognostic insights and even guide 
therapeutic intervention (Da Gama Duarte et al. 2018b). The 
TME can be readily investigated, for example, via histologic 
analysis of archival resected tumour tissue (more recent flu-
orescence-based techniques enable simultaneous detection 
of multiple immune cell sub-populations).

Tumour‑infiltrating B cells

The presence of TME-infiltrating leukocytes has long been 
shown to predict a favourable clinical outcome in melanoma 
(Clark et al. 1989; Tefany et al. 1991; Mihm et al. 1996; 
Clemente et al. 1996). While innate and adaptive T cell 
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anti-tumour activities are well studied, knowledge regard-
ing those of B cells lags behind (Zhang et al. 2014; Tsou 
et al. 2016). Although tumour lymphocytic infiltrates usually 
consist predominantly of T cells, B cells are also a compo-
nent, and in some types of carcinoma even outnumber T 
cells (Spaner and Bahlo 2011). B cells infiltrate several cuta-
neous malignancies, including melanoma (Egbuniwe et al. 
2015), and appear to have key functions within the cutane-
ous melanoma microenvironment (Karagiannis et al. 2013). 
Additionally, systemic B cell responses (e.g. alterations in 
circulating IgG levels) also occur during human cutaneous 
melanoma (Egbuniwe et al. 2015). However, despite such 
observations, B cell mechanistic roles in anti-tumour sur-
veillance and -immunity remain relatively obscure (Zhang 
et al. 2014).

Like other leukocytes, B cells act on tumour cells both 
directly [via cell–cell contact (e.g. antigen presentation 
and co-stimulation)] and indirectly [via antibody produc-
tion (including effects of antigen–antibody complexes), 
cytokine secretion, and effects on other cell types] (Mar-
tin and Chan 2006). Global B cell gene expression signa-
tures and the presence of tumour-infiltrating B cells have 
been associated with a favourable prognosis in several 
cancer types (Schmidt et al. 2008; Mahmoud et al. 2012; 
Lohr et al. 2013; Iglesia et al. 2014). In melanoma, the 
high expression of a B cell signature was predictive of 
improved overall survival, based on mRNA sequencing 
data from The Cancer Genome Atlas (TCGA) database 
(n = 329) (Iglesia et  al. 2016). When investigating the 
clonal diversity of these B cell infiltrates via BCR reper-
toire sequencing, BCR diversity was also associated with 
survival (Iglesia et al. 2016). More recently, an individual 
B cell score identified from transcriptomes of a cohort of 
treatment-naïve primary cutaneous melanomas (n = 703) 
was also found to be strongly predictive of a favourable 
melanoma-specific survival (Nsengimana et al. 2018). 
These findings were validated using a primarily metastatic 
melanoma dataset from TCGA database (n = 472), when 
considering overall survival (Nsengimana et al. 2018). 
However, B cells are capable of engaging in both pro- and 
anti-tumour responses (He et al. 2014), influenced by the 
dynamic sub-population balance (Tan 2001; Fremd et al. 
2013; Tsou et al. 2016). Despite this, B cell infiltrates are 
commonly identified using the pan-B cell marker CD20, 
rather than subset-specific markers (Flynn et al. 2017). 
Based on CD20 expression alone, melanoma metastasis B 
cell proportions range from 15 to 25% of the lymphocytic 
infiltrate (Hussein et al. 2006; Erdag et al. 2012). Particu-
larly relevant to antibody production, the B cell infiltrate 
includes  CD138+ plasma cells (Erdag et al. 2012; Bosisio 
et al. 2016). Based on lessons learnt from immunopheno-
typing circulating B cells, more inclusive B cell subset 
markers can be used when interrogating the TME. These 

may enable the identification of naïve B cells  (CD19+, 
 CD20+,  CD27−), transitional B cells  (CD19+,  CD20+, 
 CD24high,  CD38high), follicular B cells  (CD19+,  CD20+, 
 CD21+,  CD24+,  CD27−,  CD38low), memory B cells 
 (CD19+,  CD20+,  CD27+,  CD38−), plasmablasts  (CD19+, 
 CD20−,  CD27high,  CD38high,  CD138−), and plasma cells 
 (CD19low,  CD20−,  CD27high,  CD38high,  CD138+) (Maecker 
et al. 2012).

A high number of intra- or peri-tumoural  CD20+ B cells 
in primary melanoma samples provided melanoma patients 
with a survival advantage (Ladányi et al. 2011). Further-
more, such infiltrates were less prominent in primary mela-
nomas that led to visceral metastases when compared to 
those not developing metastases or with lymph node metas-
tases (Ladányi et al. 2011). Although intra-tumoural B cells 
were predominately observed in a dispersed pattern, follicle-
like B cell aggregates occurred in 26% of patients (Ladányi 
et al. 2011). Garg et al. corroborated these findings, and 
further reported that primary melanomas containing many 
 CD20+ B cells subsequently metastasised less frequently 
(Garg et al. 2016). Even in melanoma metastases, higher 
densities of  CD20+ B cells were associated with increased 
overall survival (Erdag et al. 2012). Consistently, high CD20 
mRNA expression was associated with a more favour-
able overall survival in melanoma, using TCGA database 
(n = 384) (Saul et al. 2016). However, Martinez-Rodriguez 
et al. reported that abundant tumour-infiltrating  CD20+ B 
cells (> 15%) in primary cutaneous melanoma correlated 
with tumour recurrence and lymph node metastasis, as 
well as a shorter disease-free interval and overall survival 
(Martinez-Rodriguez et al. 2014). Other than differences 
in location (intra- or peri-tumoural) and B cell abundance, 
such contradictory findings may be attributed to the use of 
the CD20 pan-B cell marker, which is present on all B cell 
subsets prior to plasma cell differentiation. As such, the 
presence of heterogeneous B cell sub-populations among 
the detected  CD20+ cells, including naïve, memory, and 
regulatory B cells  (CD20+/low), may be exerting differential 
influences within the TME. Multiple immune and tumour 
factors may contribute to disrupting homeostasis and pro-
moting cancer immune escape and tumour growth (Da Gama 
Duarte et al. 2018b). Further studies are required to fully 
comprehend how specific functionally distinct B cell subsets 
may confer a prognostic benefit or disadvantage.

Over 30 years ago, Weissmann et al. pioneered inves-
tigation into the presence of plasma cells within primary 
cutaneous melanoma infiltrates, discovering that this was 
a useful predictor of lymph node metastasis (Weissmann 
et al. 1984). Soon after, another study found that plasma 
cell infiltration (abundant plasma cells organised into 
nodules or patches, rather than dispersed or absent plasma 
cells) correlated with a poor prognosis (Mascaro et al. 
1987). Recently, it has been found that dispersed  CD138+ 
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plasma cell infiltrates also correlated with favourable 
clinical outcomes in primary melanoma, while clusters 
were associated with a significantly worse prognosis 
(Bosisio et al. 2016).

A large meta-analysis of gene expression signatures 
demonstrated that a plasma cell signature was a sig-
nificant predictor of survival in solid tumours in gen-
eral (Gentles et  al. 2015). Indeed, when investigating 
melanoma metastases, Erdag et al. reported that patients 
with higher densities of  CD138+ plasma cells exhibited 
increased overall survival (Erdag et al. 2012). Although 
tumour-infiltrating plasma cells can actively produce 
anti-tumour antibodies (Punt et al. 1994), cross-talk with 
tumours can skew the humoral response to adopt regula-
tory or pro-tumoural functions (Saul et al. 2016). Namely 
IgG subclass distribution (65–80% IgG1, 2–4% IgG4) has 
been shown to be disrupted in melanoma, with a loss of 
IgG1 predominance (Saul et al. 2016). An immunosup-
pressive role has been reported for IgG4, the least pre-
dominant IgG subclass, with evidence of IgG4 antibodies 
impairing antibody—and thus anti-tumour—responses in 
melanoma (Karagiannis et al. 2013). Indeed, the mela-
noma microenvironment tends to favour type 2 helper 
T cell (Th2)-type inflammation (which promotes B cell 
IgG4 production), and elevated circulating IgG4 levels are 
generally associated with unfavourable outcomes, perhaps 
in part via interfering with IgG1’s tumouricidal effects 
(Egbuniwe et al. 2015). In agreement, elevated circulating 
IgG4 was found to be predictive of melanoma progres-
sion and poor clinical outcomes (Karagiannis et al. 2015). 
Only detailed antibody characterisation (specific isotype, 
subclass, and modification profile) can determine the spe-
cific role and associated prognostic value of TME anti-
bodies. Furthermore, antibodies and immune complexes 
can recruit pro-tumourigenic myeloid cells to the TME, 
and can induce FcR- and complement-mediated chronic 
inflammation (He et al. 2014). Pro-tumoural immunity 
is likely partially attributable to suppressive cytokine-
mediated signalling by  Breg (IL-10 and TGFβ) and regula-
tory cell recruitment (Linnebacher and Maletzki 2012).

Conversely, tumour-infiltrating B cells may promote 
anti-tumour immunity via antigen processing and pres-
entation, stimulatory cytokine-mediated signalling, for-
mation of tertiary lymphoid structures (TLSs), antigen-
driven clonal expansion, antibody production, and class 
switching (Nielsen and Nelson 2012; Yuen et al. 2016; 
Chiaruttini et al. 2017), and their effects on other leuko-
cyte types (especially cytotoxic leukocytes). Specifically, 
antibody production can potentiate anti-tumour immu-
nity via antibody-dependent cytotoxicity, complement-
mediated tumour cell destruction, or opsonisation (Nelson 
2010).

Tertiary lymphoid structures

Driven by chronic inflammation, tumour-infiltrating B 
cells (peri- or intra-tumoural) often organise into follicle-
like aggregates resembling GCs (Ladányi et al. 2011), 
known as ectopic or TLSs. TLSs are also evident in vari-
ous chronic inflammations, infections, and autoimmun-
ity settings (Drayton et al. 2006; Carragher et al. 2008), 
and—like SLO—exhibit a B cell zone containing follicular 
dendritic cells, a T cell zone with mature dendritic cells, 
and high endothelial venules (HEVs) (Dieu-Nosjean et al. 
2014). HEVs provide immune cells with a gateway to enter 
the TME, thereby facilitating immune cell recruitment and 
mobilisation (Dieu-Nosjean et al. 2016), and contribute to 
the generation of both effector and memory T and B cells 
(Germain et al. 2015). Intra-tumoural TLSs are thought to 
orchestrate both local and systemic anti-tumour responses, 
and are largely associated with a favourable clinical prog-
nosis (Sautès-Fridman et al. 2016). With regards to B cells 
specifically, the majority of studies across several solid 
tumours investigating the presence of  CD20+ B cell aggre-
gates in TLSs demonstrated a correlation with improved 
prognosis (Sautès-Fridman et al. 2016). It has even been 
suggested that the presence or composition of TLSs may 
facilitate patient stratification approaches with regards to 
suitability for immunotherapy (Hiraoka et al. 2016).

TLSs have been called local antibody producing fac-
tories, where B cells are capable of undergoing dynamic 
tumour antigen-driven development into plasma cells that 
secrete large amounts of high-affinity antibodies, which 
may differ from those secreted into circulation from dis-
tant sites (Teillaud and Dieu-Nosjean 2017). It has even 
been suggested that tumour escape mechanisms may 
trigger in situ production of tumour-specific antibodies 
(Teillaud and Dieu-Nosjean 2017). As indicated above, 
whether these antibodies contribute to anti- or pro-tumour 
responses depends on the class of antibodies produced 
(and their glycosylation patterns), with IgG1 and IgG3 
being favourable and IgG2, IgG4 and IgA unfavourable 
(Teillaud and Dieu-Nosjean 2017). As such, antibody 
responses are diverse and polyfunctional, and, accord-
ingly, can have differential prognostic implications (Ger-
main et al. 2015).

Regulatory cell types, such as regulatory T cells and 
myeloid-derived suppressor cells also occur in TLSs, and 
high frequencies may indicate an increased risk of relapse 
and a poor clinical prognosis (Colbeck et al. 2017). As such, 
although most evidence is supportive of an anti-tumour 
role, in the absence of adequate stimuli (or as modified by 
tumour products) TLSs may also foster immunosuppression 
or tumour growth. As such, the specific location of TLSs 
in the TME and their cellular composition is essential in 
determining clinical significance, a parameter which differs 
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across cancers and may be a contributor of contradictory 
findings (Colbeck et al. 2017).

Melanoma histologic analysis reveals functional TLSs 
with evidence of antigen-driven B cell responses (first 
reported in cutaneous metastases), while incomplete TLSs 
in primary lesions display poorly organised B cell aggre-
gates (Cipponi et al. 2012). Furthermore, analysis of the 
immunoglobulin repertoire supports a local antigen-driven B 
cell response, with evidence of within-TLS clonal amplifica-
tion, isotype switching, and somatic hypermutation (Cipponi 
et al. 2012). Despite Cipponi et al. reporting the absence of 
B cell follicles in primary melanoma, such follicles were 
observed in a subsequent study employing a larger patient 
cohort, although at lower levels than in cutaneous metas-
tases (Ladányi et al. 2014). It is likely that TLS-derived B 
cell responses may occur in both early- (after induction by 
chronic inflammation) and late-stage disease. These struc-
tures have also been identified in metastatic melanoma using 
a unique chemokine gene expression signature enriched for 
immune- and inflammation-related genes, and were associ-
ated with improved patient outcomes (Messina et al. 2012). 
Although not investigated in the context of TLSs, a high 
HEV density often accompanies increased lymphocytic infil-
tration and enhanced tumour regression in primary mela-
nomas (Martinet et al. 2012; Avram et al. 2013). A recent 
study also in primary melanoma confirmed these findings, 
including the presence of TLSs, but found no correlation to 
patient prognosis (Sebestyén et al. 2018). TLSs have also 
been observed in desmoplastic melanoma, a subtype char-
acterised by a high mutational burden and frequent lympho-
cytic infiltrates (Stowman et al. 2018).

Circulating B cells and antibodies

An ideal biomarker should be measureable in readily acces-
sible peripheral fluids and be highly sensitive and specific 
for melanoma to achieve diagnostic, prognostic, and thera-
peutic monitoring utility in a clinical setting. B cell differen-
tiation and the production of tumour-specific antibodies are 
dynamic processes influenced by changing tumour antigen 
profiles and microenvironmental as well as systemic signals. 
Circulating antibody characteristics and dynamics can thus 
provide insight into bi-directional engagement between the 
immune system and the tumour(s). As mentioned, melano-
mas are highly heterogeneous and unstable, experiencing 
changes in tumour antigen expression profiles—including 
CT and melanoma differentiation antigens—over time (Elder 
et al. 1989; Svobodová et al. 2011). This poses a challenge 
to effector leukocytes, including B cells, which must con-
tinually develop new antigen-specificities. The ability to 
simultaneously assay a significant proportion of the sys-
temic tumour antigen-specific antibody repertoire would 

thus provide a unique snapshot of the tumour at a given time 
point, while circumventing the influence of inter- and intra-
tumour heterogeneity that affects tissue-based techniques, 
thereby offering an attractive route to the discovery of novel 
blood-based biomarkers. Furthermore, unlike tumour anti-
gens (which are rapidly degraded upon entry into circula-
tion), specific antibody titres are relatively stable (Belousov 
et al. 2008).

Circulating antibodies can be measured using several 
techniques that differ in terms of assay complexity and 
necessary specificity. The simplest of these is the enzyme-
linked immunosorbent assay (ELISA), which offers limited 
sensitivity and multiplexing capacity. High-throughput pro-
tein microarrays overcome these limitations (Duarte and 
Blackburn 2017), while generating ELISA-concordant data 
(Gnjatic et al. 2009; Beeton-Kempen et al. 2014). Microar-
rays containing only peptide antigens (rather than polysac-
charide antigens) reflect T-dependent rather than T-inde-
pendent responses. Indeed, T-dependent responses probably 
constitute the majority or at least a significant proportion of 
the response phase to established melanoma, especially in 
light of the strongly observed immunogenicity of certain 
melanoma peptide antigens.

Diagnostic and prognostic biomarkers

Circulating tumour antigen-specific antibodies are produced 
in response to most cancers, and often precede clinically 
apparent disease by months to years (Tan 2001), with the 
signature often being more pronounced at earlier time-
points (Ladd et al. 2013), which probably reflects increas-
ing tumour and immune response heterogeneity over time, 
especially after invasion and metastasis. This highlights 
the applicability of tumour antigen-specific antibodies as 
diagnostic or prognostic biomarkers (Caron et al. 2007). 
However, detection by protein microarray depends on prior 
identification of antibody-targeted tumour antigens, a limit-
ing factor for antibody profiling coverage (Tan et al. 2009).

Previously, a significant anti-tyrosinase IgG autoantibody 
presence was noted in both melanoma and vitiligo patients 
(Fishman et al. 1997). Anti-tyrosinase autoantibodies were 
also detected in healthy individuals, albeit at significantly 
lower levels (Fishman et al. 1997). To assess the correlation 
between autoimmunity (spontaneous autoantibody produc-
tion) and melanoma survival, Maire et al. screened advanced 
melanoma patients for the presence of anti-thyroid and anti-
nuclear autoantibodies (Maire et al. 2013). Indeed, evidence 
of autoantibodies predicted improved survival, independent 
of prior immunotherapy status (Maire et al. 2013). Recent 
evidence further reported that vitiligo was to some degree 
protective against skin cancers, including melanoma (Rod-
rigues 2017).
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Hoon et al. first detected circulating IgG antibodies tar-
geting MAGE-1 in stage III/IV melanoma patients (Hoon 
et al. 1995). Soon after, these findings were extended in a 
cohort of stage III melanoma patients (n = 23) who exhibited 
IgG antibodies targeting tyrosinase, tyrosinase-related pro-
tein 1 (TRP-1) and 2 (TRP-2), and gp100, when compared 
to healthy individuals (Huang et al. 1998). Jäger et al. inves-
tigated whether a melanoma patient with elevated IgG NY-
ESO-1-specific antibody titres exhibited a matching effector 
T cell response, and unsurprisingly verified that B and T cell 
responses can occur simultaneously (Jäger et al. 1998). Next, 
Stockert et al. screened melanoma patient (n = 127) serum 
for IgG antibodies targeting a subset of tumour antigens, 
successfully detecting anti-NY-ESO-1, -MAGE-1, -MAGE-
3, and -SSX2 antibodies that were not present in healthy 
individuals (n = 70) (Stockert et al. 1998). Furthermore, in 
an additional melanoma patient cohort (n = 62), the presence 
of tumour-specific antibodies indeed indicated expression 
of corresponding antigens by the tumour, with all anti-NY-
ESO-1+ antibody patients possessing matching NY-ESO-1+ 
tumours and NY-ESO-1− tumour patients exhibiting no such 
antibody responses (Stockert et al. 1998). A more recent 
study also detected significant anti-NY-ESO-1 antibod-
ies in only half of a metastatic melanoma cohort (n = 11) 
with NY-ESO-1+ tumours refractory to all standard treat-
ments (Robbins et al. 2011), implying that the expression 
of even highly immunogenic antigens may not always lead 
to a matched circulating antibody response. Furthermore, 
tumours expressing poorly immunogenic tumour antigens 
may be less likely to induce antigen-driven B cell and anti-
body responses. Nonetheless, the potential diagnostic utility 
of circulating tumour antigen-specific antibodies is clear and 
is enhanced now by the availability of novel, highly repro-
ducible technologies with improved sensitivity and multi-
plexing capacity for antibody quantitation/isotyping, such 
as protein microarrays.

Investigating the evolution of NY-ESO-1-specific anti-
body titres in patients (n = 10) with NY-ESO-1+ tumours 
relative to tumour antigen expression revealed that anti-
body titre varied with the burden of NY-ESO-1+ tumours 
(including increasing antibody titres accompanying disease 
progression, and decreases accompanying partial regression 
or curative surgical resection) (Jäger et al. 1999). This indi-
cates that persistent antigen contributes to the maintenance 
of the corresponding antibody response and implies that 
monitoring antibody repertoire changes may thus indicate 
disease regression, progression, or recurrence (provided that 
memory was successfully induced). In addition, a cohort of 
primary (n = 66) and metastatic (n = 13) uveal melanoma 
patients was recently found to exhibit anti-gp100, -MART-
1, and -tyrosinase antibodies during both disease stages 
examined, whereas anti-NY-ESO-1 antibodies were less 
frequent in this melanoma subtype (and only detected in 

metastatic disease) (Triozzi et al. 2015). Regarding addi-
tional B cell-relevant circulating prognostic biomarkers, 
an elevated circulating plasmablast  (CD19+CD38high) fre-
quency was observed in non-progressing metastatic mela-
noma, demonstrating persistent and functional anti-tumour 
B cell responses (DeFalco et al. 2017). When considering 
circulating antibodies, Litvak et al. assessed the prognostic 
capacity of 90 kDa tumour-associated antigen (TA90) anti-
bodies in prognostic feature-matched patients with primary 
melanoma (1–2 mm and tumour-negative regional lymph 
nodes) who either did (group 1) or did not (group 2) experi-
ence recurrence within at least 7 years (Litvak et al. 2004). 
Interestingly, although there was no difference in IgG TA90 
antibody titre, elevated levels of IgM TA90 antibodies cor-
related with prolonged survival, whereas their absence was 
associated with metastatic disease in both groups (Litvak 
et al. 2004). A more recent study assessed antibodies against 
a panel of 29 tumour-associated antigens using a bead-based 
immunoassay in stage I–IV melanoma patients (n = 365) 
(Zörnig et al. 2015). However, this study reported associa-
tions between IgG antibodies against specific antigens and 
poor clinical outcomes, with decreased overall survival and/
or progression-free survival (Zörnig et al. 2015). As such, in 
addition to the antibody class produced, the antigen specific-
ity itself may also have differential prognostic implications.

Therapeutic efficacy biomarkers

Data indicate that tumours likely to benefit from immuno-
therapy can be defined as having a pre-existing robust gen-
eral antibody response (Yuan et al. 2016). Immunotherapy 
may also reactivate suppressed immunity to trigger antibody 
production, and monitoring changes in the antibody reper-
toire may thus reflect treatment efficacy. However, robust 
pre-analytic, analytic, and clinical validation of prospective 
immunotherapy efficacy biomarkers is required to prove 
their clinical predictive or monitoring utility (Dobbin et al. 
2016; Masucci et al. 2016).

An early study investigating the presence of tumour-spe-
cific antibodies in a cohort of stage III/IV melanoma patients 
treated with a melanoma cell vaccine found that more than 
half of patients developed IgG-specific MAGE-1 antibod-
ies (Hoon et al. 1995). This study was expanded to stage III 
melanoma patients (n = 23) receiving a polyvalent melanoma 
cell vaccine which induced IgG targeting TRP-2 and gp100 
(Huang et al. 1998). Clinical efficacy was assessed in stage 
II melanoma patients treated with a polyvalent vaccine plus 
BCG (although circulating antibodies were only assessed 
against the tumour-associated antigen TA90): elevated 
IgM TA90 antibody titres correlated with improved overall 
survival (Hsueh et al. 1998; DiFronzo et al. 2002), while 
elevated IgG TA90 antibody titres correlated with decreased 
survival (Hsueh et al. 1998).
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Stage IV melanoma patients vaccinated with NY-ESO-1 
developed matched antigen-specific cellular  CD8+ and  CD4+ 
T cell and antibody responses (Jäger et al. 2000b), with evi-
dence that the  CD8+ T cell response preceded the antibody 
response (Jäger et al. 2000a). Similar findings were reported 
in patients vaccinated with NY-ESO-1 and ISCOMATRIX 
(NY-ESO-1+ tumours and minimal residual disease) (Davis 
et al. 2004), with NY-ESO-1 and CpG in Montanide (stage 
II/III/IV) (Valmori et al. 2007), and with vaccinia/fowlpox 
NY-ESO-1 (stage III/IV) (Jäger et al. 2006). A multiplexed 
approach employing a protein microarray containing 100 
different CT antigens also demonstrated induction of anti-
NY-ESO-1 antibodies, among antibodies against several 
other tumour antigens, after vaccination of stage IV mela-
noma patients (NY-ESO-1+ tumours) with NY-ESO-1 and 
ISCOMATRIX (Beeton-Kempen et al. 2014).

In stage III/IV melanoma patients undergoing CTLA-4 
blockade, pre-existing or induced NY-ESO-1 antibodies 
exclusively identified patients experiencing clinical benefit 
(Yuan et al. 2008). However, a subsequent study reported no 
correlation before or after treatment (Goff et al. 2009). Yuan 
et al. later reiterated their initial findings in a larger cohort 
of advanced metastatic melanoma patients, with NY-ESO-1 
seropositive patients being more likely to exhibit clinical 
improvement after CTLA-4 blockade (Yuan et al. 2011). 
Nonetheless, a subsequent study of stage III/IV melanoma 
patients investigating circulating antibodies against five dis-
tinct tumour antigens showed no association between the 
post-CTLA-4 blockade induction of tumour-specific anti-
bodies and clinical benefit (Weber et al. 2012). Currently, 
no studies have investigated whether there is a correlation 
between circulating B cells and antibodies and PD-1 block-
ade efficacy. Both CTLA-4 and PD-1 blockade can directly 
or indirectly regulate B cell activity and antibody produc-
tion (Yuen et al. 2016) through immune de-repression. As 
expected, immunotherapy can induce antibody production 
in melanoma patients, but anti-tumour activity of antibodies 
can also be down-regulated by immune regulatory pathways.

Biomarkers predicting immune‑related adverse 
events (irAEs)

A common side effect of immunotherapy is onset of high-
grade irAEs that mimic classic autoimmunity, since such 
therapies generally reverse immunosuppressive effects 
(including circumventing some tolerance mechanisms) 
(Chen and Mellman 2017). Perhaps expectedly, vitiligo and 
other dermatologic immune-related events are common 
adverse effects of immunotherapy in patients with cutane-
ous melanoma (Michot et al. 2016). Interestingly, a systemic 
review of a large number of melanoma patients undergoing 
immunotherapy reported that those who developed vitiligo 
exhibited significantly improved progression-free and overall 

survival (Teulings et al. 2015). Manifestation of irAEs may 
in fact thus also reflect the induction of robust organ-specific 
(‘organotypic’) anti-tumour immunity.

Recent evidence identified B cells as potential irAE-
predictive biomarkers in the context of immune checkpoint 
(CTLA-4 and/or PD-1) blockade: early reduction in total 
peripheral B cell frequency and enrichment of differenti-
ated  CD21lowPD-1+ memory B cells and plasmablasts 
preceded high-grade irAEs (Das et al. 2018; Liudahl and 
Coussens 2018). Since plasmablasts are immature plasma 
cells, such changes may impact antibody production. Cir-
culating autoantibodies have been suggested as potential 
predictors of irAEs in an organ-specific manner (Michot 
et al. 2016). Indeed, using the Immunome protein array, 
we have shown that profound increases in the autoantibody 
repertoire preceded high-grade irAEs in a small cohort of 
melanoma patients treated with intralesional BCG followed 
by CTLA-4 blockade (Da Gama Duarte et al. 2018a). A sub-
sequent study, utilising the HuProt Human Proteome array, 
recently published similar findings in a cohort of melanoma 
patients undergoing checkpoint blockade monotherapy or 
combination therapy: baseline predictive autoantibody pro-
files could readily distinguish patients who did or did not go 
on to experience severe irAEs (Gowen et al. 2018). How-
ever, these early studies are limited by low sample sizes, and 
require validation in larger cohorts.

Challenges and perspectives

Induction and modulation of primary and secondary B cell 
responses by tumours and their influence on tumour cells 
are complex and dynamic processes, meaning that no broad 
consistent conclusions can yet be drawn regarding whether 
B cell activities in an oncology context are beneficial or 
detrimental. Differential anti-/pro-tumour effects of leuko-
cytes (including B cells and antibodies) are likely due to 
whether they are active early versus later during tumouri-
genesis and progression, to ratios of B cell sub-populations 
and their phenotypes, and to ratios of antibody functional 
subtypes (including pro-inflammatory vs. suppressive B 
cells/antibodies).

The tumour and its products likely significantly influence 
B cell phenotype and function. Tumour cell mechanisms 
mediating immune evasion and escape are numerous, includ-
ing selection of non-immunogenic clones for outgrowth, 
antigen masking, and significant modulation of the micro- 
and systemic environment in ways that promote tumour pro-
gression. Despite such immunosuppression, the tumour still 
represents a chronic inflammatory stimulus, giving rise to 
a situation in which opposing inflammatory and resolving 
biological programmes are simultaneously (and abnormally) 
active. Thus, immunosuppressive tumour activities extend 
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to induction of regulatory cell types in the TME: the chronic 
inflammation characterising established malignancy can 
skew leukocytes away from pro-inflammatory and towards 
regulatory types.

As a result of the incredible heterogeneity of established 
tumours, as well as their ability to adapt to and survive 
within their environment, it may appear at first glance that a 
focus on immune responses during advanced cancer would 
not be helpful in designing broadly applicable and dura-
ble therapeutic modalities. However, an understanding of 
immuno-oncology of advanced cancers has provided some 
of the most broadly applicable and clinically effective anti-
cancer therapies yet, including immune checkpoint blockade. 
Overall, immune-oncology is critical to melanoma pathol-
ogy and therapeutics. Recent developments and a switch 
in focus from treating the tumour to treating the immune 
response to it strongly support a role for the immune sys-
tem in both the prevention and progression of melanoma. 
The measurement of circulating tumour-specific antibodies, 
particularly, represents a promising avenue in the search for 
new, validated melanoma biomarkers. In addition, antibody 
responses may reflect concurrent  CD8+ T cell responses 
and help identify novel therapeutic antigen or antibody 
candidates.
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