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Table 1. Table detailing machine learning analysis comparisons with designated cases and 
controls.

Figure 2

Figure 4

Figure 5

Table 5. List of the 23 biomarkers found to be elevated in control samples.

Table 3. List of neurologically related pathways found in the functional enrichment analysis 
of the 116 biomarkers.

Figure 6

Table 4. List of the 60 biomarkers found within the Genecards collection of Parkinson’s disease related 
genes.

Table 2. Summary of machine learning analysis of 5 comparison groups. The number of 
biomarkers, AUC, Sens & Spec are listed for each analysis type.

Figure 3

A.  HYP vs. NRM B.  HYP: DAT Deficit vs. No DAT Deficit

C. HYP, DAT Deficit:  Phenoconverted vs. Not Phenoconverted D. HYP, DAT Deficit vs. NRM, No DAT Deficit 

AUC = 0.776
Sens = 0.776
Spec = 0.700

HNRNPA2B1, YWHAE, ZBTB25, CCDC110, LDHB, 
FOXR2, LRRFIP2, PDCL3, RAD23B, COPS6

AUC = 0.829
Sens = 0.905
Spec = 0.706

VDR, RBMS1,RIPK1, RAD23B, STAM2, PCBP2, HINFP, TOM1, 
ASNA1, TRIM37, NDRG2, NDE1, TAF5L, RAD51D, CCM2, 

RNF7, AFF4, PLEKHA5, PPP4C, PI42B, CTAG2, IL13RA1

AUC = 0.833
Sens = 0.828
Spec = 0.763

SSNA1, NDE1, P3H4, TBCB, NAP1L3, XAGE4, 
YWHAG, ATXN3, TP53, KRT19, ZC4H2, GGPS1, 

PRKD2, STIP1, SPANXN2, PRKAR1A, STK25, APPL1, 
STYX, INA, BACH1, PRKCZ, HSPE1, KRT15, YWHAE, 

IL1A, THEG, KRT8, PLAC1, TPM1, BAD

AUC = 0.848
Sens = 0.796
Spec = 0.802

HMG20B, HNRNPA2B1, IL1A, ZC4H2, ZNF593, PCBP2, 
RABEP1, PRM2, ODF4, PRKCZ, CCDC110, STIP1, TP53, 
ETV7, POU2AF1, ELF1, TSGA10, CLK3, IKZF1, ZNF276, 

HCLS1, WWOX, TACC1, MCMBP, AFF4, SPATA19, MLH1, 
RALBP1, RPS6KB1

# Subgroup Comparison Model # of Biomarkers AUC Sens Spec

2

3

4

5

1 HYP vs NRM 
n = 96 vs. n = 49

HYP: DAT Deficit vs. No 
DAT Deficit

n = 38 vs. n = 58

HYP, DAT Deficit: 
Phenoconverted vs. 

Non-Phenoconverted
n = 17 vs. n = 21

HYP, DAT Deficit vs. NRM, 
No DAT Deficit

n = 38 vs. n = 49

HYP, No DAT Deficit vs. 
NRM, No DAT Deficit

n = 58 vs. n = 49

Model based (LogitBoost/10CV/Ranger impurity)

Model based (LogitBoost/10CV/Praznik JMI)

WMP (Significant biomarkers) – p-value ≤0.05

ROC WMP (All biomarkers)

ROC WMP (Elevated in Cases)

Model based (Random Forest/10CV/Praznik MIM)

ROC WMP (All biomarkers)

ROC WMP (Elevated in Cases)

Model based 
(LogitBoost/10CV/party_cforest.importance)

ROC WMP (All biomarkers)

ROC WMP (Elevated in Cases)

Model based (LogitBoost/LOOCV/Ranger impurity)

ROC WMP (All biomarkers)

ROC WMP (Elevated in Cases)

ROC WMP (All biomarkers)

ROC WMP (Elevated in Cases)

29

29

11

31

31

29

14

22

22

2

10

10

7

49

49

12

116

0.657

0.848

0.643

0.736

0.833

0.826

0.732

0.8583

0.829

0.507

0.709

0.776

0.653

0.736

0.955

0.668

0.740

0.796

0.714

0.533

0.828

0.793

0.776

0.8333

0.905

0.524

0.632

0.776

0.673

0.770

0.939

0.592

0.555

0.802

0.51

0.843

0.763

0.763

0.658

0.800

0.706

0.529

0.796

0.7

0.658

0.715

0.897

0.724

29 biomarkers 31  biomarkers

22 biomarkers 10  biomarkers

We used protein microarrays with 1600+ correctly folded proteins to identify an autoantibody 
signature (sensitivity = 0.905, specificity = 0.706) that can identify which high risk patients that are 
likely to phenoconvert to Parkinson’s Disease.

We analyzed 145 samples from the PARS cohort. No participants had dementia at the time of 
enrolment. In the hyposmic/ DAT deficit cohort, 17 patients phenoconverted to PD within 4 years. In 
the normosmic cohort, none of the participants exhibited a DAT deficit or went on to phenoconvert 
to PD. Four comparisons were analyzed as outlined in Figure 1 and Table 1. Seven pooled normal 
samples were included as technical replicates (not shown).

We assayed 145 plasma samples from the PARS cohort to detect autoantibodies on the i-Ome 
protein microarray, which contains more than 1600 full-length human antigens. Seven pooled normal 
serum samples were included as a technical control.

Whole Model Performance (WMP) - ROC curves showed high diagnostic accuracy
Following model-based evaluation, the best panels of features for stratifying between the control and 
pre-symptomatic groups were selected based on the highest diagnostic accuracy (represented by 
Area Under the Curve (AUC), sensitivity (Sens), and specificity (Spec)).

Functional Enrichment
The Uniprot ID for each of the 116 significant biomarkers was used as an input into WebGestalt, a 
web-based application that identifies classes of relevant bioentities (including functionalities, gene 
ontology and biological pathways) associated with genes or proteins (Thanati et al., 2021). The 
collection of 1609 proteins on the i-Ome Protein Microarray was used as the reference list for this 
analysis. Top 5 pathways (by p-value) and 5 neurologically (p-value and keyword based) are shown in 
Table 3.

Summary of ML Analysis - Consistent diagnostic accuracy observed.
A total of 116 non-redundant biomarkers were identified from the aforementioned analyses. 
Comparison number 5 was added to compare the non-DAT deficient patients who are and are not 
hyposmic(true negative). 

Disease Association
A list of Parkinson’s disease related genes  was retrieved from https://www.genecards.org and was 
used as a reference for disease association. Sixty of the 116 biomarkers were found to be related to 
genes tied to Parkinson’s disease.

Biomarkers Elevated in Control Samples
The same analysis pipeline as previously described was conducted on the unfiltered dataset (n=1609 
antigens) for downstream machine learning analysis following data pre-processing.  Interestingly, we 
identified 23 biomarkers significantly elevated in controls.

Figure 1. Flow chart showing the subsets of 145 PARS cohort patients. Machine learning analysis 
comparisons are labeled 1-4. HYP: hyposmic, NRM: normosmic, DAT: dopamine transporter

Figure 3. Flow chart showing the machine learning based pipeline used for study analysis.

Figure 2. Graphic outlining the experimental steps of the autoantibody profiling assay conducted on the 
i-Ome protein microarray.

Figure 4 A-D. ROC curve for each of the 4 comparisons. AUC, sensitivity and specificity values are listed 
along with a list of biomarkers.

Figure 5. The top biological processes, cellular compartments, and molecular functions of the 116 proteins 
identified in the cohort comparison analyses are shown. The figure was generated with WebGestalt and the 

numbers above the bars represent the number of biomarkers found in each category.

Figure 6. Venn diagram highlighting the overlap of biomarker genes found within the Genecards collection of 
Parkinson’s disease related genes.

Add plasma samples to the array, 
incubate 2 hrs. at room temp.

Add α-IgG-Cy3, incubate 
2 hrs. at room temp.

Detect with red channel fluorescent 
scanner

Figure 1

Summary

Background
Parkinson’s disease (PD) is a devastating neurodegenerative disease with unknown etiopathogenesis, 
characterized by the degeneration of dopaminergic neurons in the substantia nigra. There is currently 
no established molecular test available to diagnose PD. A panel of diagnostic biomarkers would 
allow for effective detection, classification, and treatment of PD before irreversible damage.

Current research indicates a potential autoimmune component in PD. Accumulating evidence 
suggests that PD begins years before clinical motor symptoms are detectable. Autoantibodies are 
being investigated as potential biomarkers for diagnosis and prognosis of disease including in 
neurological disorders (Prüss, 2021). As autoantibodies can often be detected years before clinical 
manifestations appear, they show great promise as useful biomarkers. 

The PARS cohort used in this study consists of plasma samples from at risk and no risk individuals at 
the prodromal stage which was recruited based on the smell identification (olfactory dysfunction) and 
DAT imaging testing. These individuals were evaluated longitudinally with annual clinical examination 
and biannual DAT imaging over the span of 4 years (Jennings et al, 2017). We identified potential 
autoantibody biomarkers for the early diagnosis of PD from 145 samples consisting of hyposmic 
(HYP) and normosmic participants (NRM), further classified based on dopamine transporter (DAT) 
deficit with or without phenoconversion to PD. Serum samples were assayed to detect 
autoantibodies with the KREX-based i-Ome Protein Microarray, which contains 1600+ natively folded 
proteins for highly specific antibody binding. 

Machine learning-based classification identified 116 autoantibodies biomarkers for stratifying the 
groups within the PARS cohort. The predictive value of the biomarkers was evaluated using ROC 
curve analysis. Consequently, a 22-biomarker signature was found to identify the HYP, DAT deficit 
group that phenoconverted to PD with a sensitivity of 90.5% and specificity of 70.6%. Amongst the 
identified biomarkers are proteins involved in immune regulation, protein degradation (RNF7), cell 
death (RIPK1) and vitamin D regulation (VDR), all potentially involved in the progression of PD.

With a complex, heterogenous disease such as PD, it is unlikely that an individual biomarker with 
sufficient predictive value will be found. We have discovered a biomarker signatures that are able to 
identify early PD in high-risk patients, thereby opening the possibility for early treatment and 
monitoring disease prognosis. With a larger sample pool and longitudinal monitoring, we hope to 
further validate and refine these signatures.

Methods

Results

We identified 22 biomarkers that can stratify between patients with hyposmia and a DAT Deficit who 
phenoconvert to PD and those who do not phenoconvert with a sensitivity of 90.5 % and specificity 
70.6 %.  In the 4 comparisons performed, we identified 116 non-redundant features, each group with 
a unique set of features.

We explored the biological significance of these PD related features and found that immune 
response mediator components were prominent in the top biological pathways identified including 
those involved in substantia nigra development. Additionally, we have also identified proteins that 
are involved in other neurological processes including long-term memory, regulation of postsynaptic 
membrane neurotransmitter receptor levels, regulation of the neuronal cell body, neuron projection 
and regulation of myelination. 

Naturally occurring autoantibodies may act as a clearance or blocking mechanism to pathogenic 
proteins that contribute to progressive brain disorders such as PD and MSA and that the decline of 
autoantibodies was detected in plasma from PD patients, relative to healthy controls (Brudek et al., 
2017).  Similarly, the autoantibody response to 23 antigens found elevated in control relative to cases 
suggest a potential protective function of autoantibodies in asymptomatic individuals. This may 
provide insight towards immunotherapeutic strategies.

Autoantibodies are detectable many years before disease symptoms are observed. There is an 
ever-growing list of disease areas including lupus (Yaniv et al., 2015), rheumatoid arthritis (Burska et 
al., 2014), Graves’ disease (Chazenbalk et al., 2002), Sjogren’s syndrome (Fayyaz et al., 2016) and 
autoimmune hepatitis (Zachou et al., 2004) where potential autoantibody biomarkers have been 
identified. Screening for autoantibody biomarkers of PD from liquid biopsies has the potential to 
enable new approaches to early disease diagnosis, drug response monitoring and identification of 
novel therapeutic targets. 

The performance of the 116 identified biomarkers will be further validated experimentally in an 
independent PD cohort from samples collected at longitudinal timepoints. The next phase of this 
study will focus on profiling autoantibody responses in samples from patients with progressive PD 
using a custom protein microarray consisting of the 161 features identified from this study.  This array 
may enable enrichment and stratification of PD patients prior to enrolment in clinical trials, as a route 
to more quickly prioritize, fail, or re-route drug candidates based on small initial cohorts. In addition, 
this array may allow for further enrichment of clinical trials by identifying autoantibody signatures that 
correspond to responder and non-responder phenotypes, as well as to the risk of developing adverse 
drug reactions.
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Groups of Comparison

HYP vs. NRM 96 (cases) vs. 49 (controls)1

2

4

3

38 (cases) vs. 58 (controls)

17 (cases) vs. 21 (controls)

38 (cases) vs. 49 (controls)

HYP: DAT Deficit vs. HYP: No DAT Deficit 

HYP: DAT Deficit: Phenoconverted to PD  vs. 
Not Phenoconverted to PD 

HYP: DAT Deficit vs. NRM, No DAT Deficit 

Negative control filtration

Data 
Pre-processing

Feature 
Selection

Evaluation of 
Feature 

Selection 
Algorithms

Biological 
Significance

Loess normalization

Identify autoantibody biomarkers in HYP patients

1. HYP vs. NRM
2. HYP: DAT Deficit vs No DAT Deficit
3. HYP, DAT Deficit: Phenoconverted vs Not Phenoconverted
4. HYP DAT Deficit vs NRM No DAT Deficit    

Machine learning package variables
Supervized feature selection methods which includes wrapper, filter, 
and intrinsic-based methods (eg ANOVA, Random Forest, Praznik 
mutual information and Ranger_permutation etc)

Data subset generated based on
• Top 2 to 50 most important variable
• Top 0.5% and 1% of variables

Resampling method
• 10-fold cross validation
• Leave-one-out cross validation (LOOCV)

Models used for feature selection evaluation

Performance Evaluation Based on Receiver Operator Characteristics (ROC) 
analysis (Area Under the Curve (AUC) value, Sensitivity and Specificity)  - Figure 4

• Random forest
• Boosting algorithms

Functional Enrichment
Compute the significant biomarkers into Webgestalt (Web tool to 

identify relevant biological pathways)





Table 1

Samples
(145 samples)

HYP
(96 samples)

DAT deficit
(38 samples)

No DAT deficit
(58 samples)

No DAT deficit
(49 samples)

1

2

3

4

Phenoconverted
(17 samples)

Not
Phenoconverted

(21 samples)

NRM
(49 samples)

Top 5 pathways (ranked based on p-value)

No

1 16 6 1.15 5.20 0.0005 Pathway_Reactome
HSP90AA1;NDE1;

SDCCAG8;SSNA1;YWHAE; 
YWHAG

Loss of Nlp from mitotic 
centrosomes

2 16 6 1.15 5.20 0.0005 Pathway_Reactome
HSP90AA1;NDE1;

SDCCAG8;SSNA1;YWHAE; 
YWHAG

Loss of proteins required for 
interphase microtubule 

organization from the centrosome

3 103 17 7.43 2.29 0.0007 Geneontology_
Biological_Process

HSP90AA1;KRT19;KRT8;
MAPK9;MLH1;NDE1;

PIP4K2B;PRKAA2;PRKAR1A;
RFX3;SDCCAG8;SSNA1;
STAM2;TPM1;TRIM37; 

YWHAE;YWHAG

Organelle assembly

4 7 4 0.51 7.92 0.0008
Geneontology_

Biological_Process
KRT19;KRT8;PRKAR1A; 

TPM1Sarcomere organization

5 17 6 1.23 4.89 0.0008 Pathway_Reactome
HSP90AA1;NDE1;

SDCCAG8;SSNA1;YWHAE; 
YWHAG

AURKA Activation by TPX2

Size Overlap Expect P-value Database Protein IDEnrichment 
RatioDescription

Top 5 pathways (keyword based, p-value ranked)

No

1 36 6 2.3095 0.0404 Cellular component ENO2;HSP90AA1;INA;
PRKCZ;STIP1;YWHAG

Myelin sheath

2 12 3 3.4643 0.0498 Biological process INA;NDRG2;YWHAESubstantia nigra development

3 39 6 2.1319 0.0568 Cellular component DNAJB1;ENO2;HOMER2;
HSP90AA1;PRKAA2;PRKCZ

Neuronal cell body

4 7 2 3.9592 0.0854 Biological process PRKCZ;YWHAE
Regulation of postsynaptic 

membrane neurotransmitter 
receptor levels

5 7 2 3.9592 0.0854 Biological process PRKCZ;RPS6KB1Long-term memory

Size Overlap Expect P-value Database Protein IDEnrichment 
RatioDescription

Candidate 
Biomarkers

n = 116

56 60 8039

Parkinson’s Disease 
Related Genes

n = 8099

Comparison Analysis Biomarker p-value Range

HYP vs NRM AK9, CDK8, PTGER3, UPT1 0.0075 – 0.041

HYP, DAT Deficit: 
Phenoconverted vs 

Not Phenoconverted
DSTYK 0.048

HYP, DAT Deficit vs NRM, 
No DAT Deficit CCDC110, CXCR6, ZNF19 0.0054-0.018

HYP: DAT Deficit vs 
No DAT Deficit

FAM50B, KAT2A, NDE1, 
CYCS, MLPH, ELOA, FES, 

FGFR1, MAP3K14, MAP4K5, 
PTPN6, STAT4, TRAF2, 

NEDD9, XBP1

0.00076-0.041
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Parkinson’s Disease Associated Biomarker

AFF4

APPL1

ATXN3

BACH1

BAD

CDK16

CD01

CLK3

DFFA

DMPK

DNAJB1

ENO2

FTH1

GAGE1

HMG20B

HNRNPA2B1

HOMER2

HSP90AA1

HSPE1

IL13RA1

IL1A

INA

KRT15

KRT8

LDHB

MAPK9

MCMBP

MLH1

MLX

NDE1

NDRG2

ODF4

PCBP2

PRKAA2

PRKCZ

PSME3

PYCR1

RABEP1

RAD23B

RALBP1

RFX3

RIPK1

RPS6KB1

SDCCAG8

SPATA19

STIP1

STK25

STYX

SUB1

TARDBP

TBCB

TMEFF2

TOM1

TP53

TPM1

VDR

WWOX

YWOX

YWHAG
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