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Patients with ACPA‑positive 
and ACPA‑negative rheumatoid 
arthritis show different serological 
autoantibody repertoires 
and autoantibody associations 
with disease activity
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Patients with rheumatoid arthritis (RA) can test either positive or negative for circulating anti‑
citrullinated protein antibodies (ACPA) and are thereby categorized as ACPA‑positive (ACPA+) 
or ACPA‑negative (ACPA−), respectively. In this study, we aimed to elucidate a broader range of 
serological autoantibodies that could further explain immunological differences between patients 
with ACPA+ RA and ACPA− RA. On serum collected from adult patients with ACPA+ RA (n = 32), 
ACPA− RA (n = 30), and matched healthy controls (n = 30), we used a highly multiplex autoantibody 
profiling assay to screen for over 1600 IgG autoantibodies that target full‑length, correctly folded, 
native human proteins. We identified differences in serum autoantibodies between patients 
with ACPA+ RA and ACPA− RA compared with healthy controls. Specifically, we found 22 and 19 
autoantibodies with significantly higher abundances in ACPA+ RA patients and ACPA− RA patients, 
respectively. Among these two sets of autoantibodies, only one autoantibody (anti‑GTF2A2) was 
common in both comparisons; this provides further evidence of immunological differences between 
these two RA subgroups despite sharing similar symptoms. On the other hand, we identified 30 
and 25 autoantibodies with lower abundances in ACPA+ RA and ACPA− RA, respectively, of which 8 
autoantibodies were common in both comparisons; we report for the first time that the depletion of 
certain autoantibodies may be linked to this autoimmune disease. Functional enrichment analysis of 
the protein antigens targeted by these autoantibodies showed an over‑representation of a range of 
essential biological processes, including programmed cell death, metabolism, and signal transduction. 
Lastly, we found that autoantibodies correlate with Clinical Disease Activity Index, but associate 
differently depending on patients’ ACPA status. In all, we present candidate autoantibody biomarker 
signatures associated with ACPA status and disease activity in RA, providing a promising avenue for 
patient stratification and diagnostics.
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Abbreviations
RA  Rheumatoid arthritis
ACPA  Anti-citrullinated protein antibodies
IgG  Immunoglobulin G
CDAI  Clinical disease activity index
DMARDs  Disease-modifying anti-rheumatic drugs
Anti-CCP  Anti-cyclic citrullinated peptide antibodies
Anti-CarP  Anti-carbamylated-protein
RF  Rheumatoid factor
BMI  Body mass index
CRP  C-reactive protein
SAB  Serum assay buffer
RFU  Relative fluorescence unit
PCA  Principal component analysis
ANOVA  Analysis of variance
GO  Gene ontology
DAVID  Database for annotation, visualization and integrated discovery
SD  Standard deviation
bDMARDs  Biologic disease-modifying anti-rheumatic drugs
csDMARDs  Conventional synthetic disease-modifying anti-rheumatic drugs
tsDMARDs  Targeted synthetic disease-modifying anti-rheumatic drugs
ESR  Erythrocyte sedimentation rate
SLE  Systemic lupus erythematosus
IgM  Immunoglobulin M

Rheumatoid arthritis (RA) is commonly diagnosed through a serological test for the presence of anti-citrullinated 
protein antibodies (ACPA). Patients testing positive for ACPA are collectively known as “ACPA-positive RA” 
(ACPA+ RA); however, patients can test negative for ACPA yet still be clinically diagnosed with RA, thereby 
being designated as “ACPA-negative RA” (ACPA− RA). Interestingly, ACPA+ RA and ACPA− RA patients have 
been shown to display differences in their disease  course1–3 and response to treatment with disease-modifying 
anti-rheumatic drugs (DMARDs)4. Recent epidemiological evidence suggests that these two subgroups of RA 
are distinct subtypes with their own risk factors, etiologies, and treatment  strategies4–6. Moreover, despite the 
stable incidence of RA over recent decades, the proportion of ACPA− RA cases has increased  significantly7. Cur-
rently, the immune or physiological differences between the ACPA+ and ACPA– subgroups of RA are not well 
understood, thereby limiting the stratification of effective treatment strategies.

To identify biomolecular or cellular differences between ACPA+ RA and ACPA− RA, investigators have used 
high-throughput molecular profiling approaches, such as  metabolomics8, single-cell RNA-seq on peripheral 
blood mononuclear cells and synovial  tissue9, flow cytometry  immunophenotyping10, and gut microbiome 
 sequencing11. Complementing these multiple omics approaches, several recent studies have turned to serum 
autoantibody profiling to identify serological differences between the two RA subgroups. For example, in a study 
by Poulsen et al. using high-density protein microarrays, the investigators identified 86 and 76 autoantibodies 
in the plasma of anti-cyclic citrullinated peptide (anti-CCP)+ RA and anti-CCP− RA patients, respectively, of 
which 61 were in  common12. In another study by Poulsen et al.13 differences in plasma IgG antibody reactivity 
to a wide range of citrullinated human proteins were observed between the same subgroups of RA. Both of their 
exploratory analyses, however, pooled together plasma samples of each study group prior to autoantibody profil-
ing, and hence cannot account for the interindividual heterogeneity expected within groups. Finally, a study by 
Reed et al.14 examined the presence of ACPA, rheumatoid factor (RF), anti-carbamylated-protein (anti-CarP) 
autoantibodies, and 36 other types of autoantibodies in anti-CCP2+ RA and anti-CCP2− RA patients. The authors 
found that 43.6% of the seronegative (i.e., IgG anti-CCP2− /IgM RF−) RA patients tested positive for one or a 
combination of ACPA, RF, and anti-CarP autoantibodies. That these patients tested positive for RA-associated 
autoantibodies suggests that a single autoantibody biomarker (e.g., ACPA) is not enough to explain the full 
clinical spectrum. Instead, RA, as well as its subgroups, are likely characterized by autoantibodies targeting a 
multitude of human autoantigens, as shown by Li et al.15.

Although ACPA is already part of the diagnostic criteria in RA, we posit that more disease-relevant, circulat-
ing autoantibodies can be discovered by profiling with much higher throughput. Certainly, with the concept of 
patient stratification (e.g., risks, clinical subsets) and precision medicine in mind, there is a clear need to search 
for new autoantibody biomarkers that directly correlate with RA disease status. In this regard, autoantibodies 
may provide a means of informing early diagnosis and treatment, as they manifest in the early stages of auto-
immunity and persist throughout the disease  course16. Herein, using an autoantibody screening platform with 
high multiplexing capacity, we investigated serum autoantibody abundances in patients with ACPA+ RA and 
ACPA− RA, as well as in healthy controls.

Results
Study population and clinical/demographic characteristics. An overview of our study design is 
presented in Fig. 1A and is described as follows: This retrospective, observational cohort study includes a total of 
92 participants comprised of three study groups, i.e., patients with ACPA+ RA (n = 32), patients with ACPA− RA 
(n = 30), and healthy controls (n = 30). At the time of serum sample collection, all RA patients had estab-
lished disease with a mean age of 62.2 years (range: 45–75 years); a mean disease duration of 8.1 years (range: 
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Figure 1.  Group-wise comparisons of serum autoantibody composition profiles. (A) Blood (serum) samples were 
collected to examine autoantibody compositions in ACPA+ RA (n = 32), ACPA− RA (n = 30), and healthy controls 
(n = 30). By using the Sengenics Immunome Protein Microarray, each serum sample was screened for 1622 IgG isotype 
autoantibodies that target human proteins in their full-length, correctly folded, native conformations. The heatmap 
illustrates autoantibodies clustered according to abundance similarities across samples. (B) Ordination plot (PCA) of 
the autoantibody profiles. (C) Ternary plot showing normalized mean abundances of 1622 autoantibodies across 
ACPA+ RA, ACPA− RA, and controls. The coordinates of each point correspond to normalized mean abundances 
(in percentages) and sum to 100. (D) Fold-changes in mean autoantibody abundances between an RA subgroup and 
the control group. X-axis and y-axis correspond to the fold-changes between ACPA+ RA and controls and between 
ACPA− RA and controls, respectively. Points shown in red represent autoantibodies that have a fold-change of 2 (or 
greater) between an RA subgroup and controls. The blue diagonal dashed line represents the line y = x. For brevity, the 
points in the scatterplot are labeled by the names of the autoantigen targets.
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1–26 years); 69.4% (43 of 62) were female; and disease activity of patients varied from remission to high disease 
activity, with a mean Clinical Disease Activity Index (CDAI) of 10.6 (range: 0–66.8). Subsets of patients were on 
treatment with biologic disease-modifying anti-rheumatic drugs (bDMARDs) (33.9% or 21 of 62), conventional 
synthetic disease-modifying anti-rheumatic drugs (csDMARDs) (82.3% or 51 of 62), targeted synthetic disease-
modifying anti-rheumatic drugs (tsDMARDs) (4.8% or 3 of 62), or prednisone (33.9% or 21 of 62). Table 1, Sup-
plementary Table 1, and Supplementary Table 2 provide the clinical and demographic characteristics of the study 
groups and study participants, respectively. Serum samples collected from all participants underwent profiling of 
1622 IgG autoantibodies using the Sengenics Immunome Protein Microarray, which provides semi-quantitative 
abundances of autoantibodies in the form of relative fluorescence units (RFUs) (see “Materials and Methods” 

Table 1.  Clinical and demographic characteristics of study participants. a ACPA, anti-citrullinated protein 
antibodies; bCDAI, Clinical Disease Activity Index; cCRP, C-reactive protein; dESR, erythrocyte sedimentation 
rate; ebDMARDs, biologic disease-modifying anti-rheumatic drugs (Abatacept, Adalimumab, Certolizumab, 
Etanercept, Infliximab, Rituximab, Tocilizumab); fcsDMARDs, conventional synthetic disease-modifying anti-
rheumatic drugs (Azathioprine, Hydroxychloroquine, Leflunomide, Methotrexate, Sulfasalazine); gtsDMARDs 
targeted synthetic disease-modifying anti-rheumatic drugs (Baricitinib, Tofacitinib, Upadacitinib); hN/A, not 
applicable.

ACPA+ RA (n = 32) ACPA− RA (n = 30) Controls (n = 30)

Sex

 Female, n (%) 22 (68.8%) 21 (70.0%) 21 (70.0%)

 Male, n (%) 10 (31.2%) 9 (30.0%) 9 (30.0%)

Age (years)

 Mean ± SD 62.6 ± 6.8 61.8 ± 6.9 62.8 ± 6.6

 Range (min–max) 48–75 45–75 52–75

BMI

 Mean ± SD 28.9 ± 6.2 30.6 ± 5.6 30.8 ± 7.5

 Range (min–max) 18.1–46.3 23.9–44.6 19.0–45.8

 Unknown 2 1 0

Ethnicity

 White, n (%) 32 (100%) 30 (100%) 30 (100%)

Smoking status

 Current, n (%) 1 (3.1%) 1 (3.3%) 1 (3.3%)

 Former, n (%) 14 (43.8%) 13 (43.3%) 10 (33.3%)

 Never, n (%) 17 (53.1%) 16 (53.3%) 18 (60.0%)

 Unknown, n (%) 0 (0%) 0 (0%) 1 (3.3%)

Rheumatoid factor (RF)

 Positive, n (%) 13 (40.6%) 11 (36.7%)
N/Ah

 Negative, n (%) 19 (59.4%) 19 (63.3%)

ACPAa

Positive, n (%) 32 (100.0%) 0 (0%)
N/A

Negative, n (%) 0 (0.0%) 30 (100%)

CDAIb

 Mean ± SD 10.5 ± 13.2 8.7 ± 12.8
N/A

 Range (min–max) 0.0–50.7 0.0–66.8

CRPc (mg/L)

 Mean ± SD 5.2 ± 5.8 8.8 ± 17.6

N/A Range (min–max) 2.9–25.6 2.9–95

 Unknown 1 1

ESRd

 Mean ± SD 11.9 ± 11.9 10.0 ± 9.7

N/A Range (min–max) 0–39 1–47

 Unknown 1 2

Treatment

  bDMARDse (user), n (%) 12 (37.5%) 9 (30.0%)

N/A
  csDMARDsf (user), n (%) 25 (78.1%) 26 (86.7%)

  tsDMARDsg (user), n (%) 2 (6.3%) 1 (3.3%)

 Prednisone (user), n (%) 9 (28.1%) 12 (40.0%)
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section). Of note, this multiplex autoantibody profiling assay has been previously demonstrated in the context of 
autoimmune  disease13,17,18,  cancer19,20, and COVID-1921.

Serum autoantibody profiles in ACPA+ RA, ACPA− RA, and healthy controls. Our principal 
component analysis (PCA) results show that all three study groups display within (intra)-group heterogeneity in 
their serum autoantibody profiles (Fig. 1B). Controls showed the largest heterogeneity in autoantibody composi-
tion. In contrast, the ACPA+ RA group showed the smallest heterogeneity, possibly indicating that ACPA+ RA 
is a more uniform disease subgroup based on immunoglobulin features. In a ternary plot showing the normal-
ized mean abundances of individual autoantibodies across the three study groups (Fig. 1C and Supplementary 
Table 3), we observed that most autoantibodies had similar mean abundances. However, several autoantibodies 
were found to have noticeably higher abundances in a particular study group (see points closer to the corners), 
possibly representing group-specific characteristics. Finally, when examining the autoantibody abundances in 
ACPA+ RA and ACPA− RA in relation to controls (Supplementary Table 4), we again observed autoantibodies 
whose abundances uniquely characterize a specific study group (Fig. 1D, see points in red). In all, our results 
suggest that not only do patients with ACPA+ RA and ACPA− RA portray serological differences in autoanti-
body abundances, but also lower abundances of certain autoantibodies (compared with controls) could poten-
tially be a novel hallmark of RA.

Differentially abundant autoantibodies in RA subgroups. We next aimed to characterize the differ-
ences in serum autoantibody abundances between ACPA+ RA and ACPA− RA in further detail. We identified 
22 and 19 autoantibodies with significantly higher abundances in ACPA+ RA and ACPA− RA, respectively, com-
pared with controls (Fig. 2 and Supplementary Table 5). The only autoantibody found to be higher in both RA 
subgroups compared with controls was for GTF2A2. Although the role of GTF2A2 in RA is currently unknown, 
it has been previously found in systemic lupus erythematosus (SLE) that point mutations in the expression 
quantitative trait loci (eQTL) of this transcription factor subunit are associated with type I interferon  levels22.

A notable target of an autoantibody higher in ACPA+ RA is IL24. In a study involving patients with RA, 
osteoarthritis, and spondyloarthropathy, Kragstrup et al. found higher levels of IL24 in synovial fluid and plasma 
of RA and spondyloarthropathy patients compared with osteoarthritis  patients23. In light of our findings, higher 
abundance of anti-IL24 autoantibodies in the ACPA+ subgroup of RA could indicate a possible route for the 
body to compensate for an overabundance of IL24. However, we caution that it is unclear at this point whether 
the identified circulating autoantibodies truly have a functional influence on their protein targets; it is possible 
that the molecular function of the protein may not be modified. Furthermore, antibodies could be produced 
due to non-specific reactions by the immune system, e.g., anti-microbial antibody responses against pathogenic 
bacterial or viral antigens, whose epitopes resemble those of self-proteins (molecular  mimicry24).

In contrast to the autoantibodies higher in RA, we next sought to identify autoantibodies with significantly 
lower abundances in either RA subgroup compared with controls. In other words, could there be less of an 
autoantibody (in circulation) for a certain disease subgroup, possibly due to subgroup-specific disruptions in 
normal physiology or immune homeostasis? For the first time, we report 30 and 25 autoantibodies that were 
significantly lower in ACPA+ RA and ACPA− RA, respectively, compared with controls (Fig. 3 and Supplemen-
tary Table 6). Among these two sets of identified autoantibodies, 8 were in common, targeting APEX1, DAPK2, 
MAP4, PSMD4, SIK2, SOCS5, STAM2, and TCF4. Interestingly, the transcription factor TCF4 has been suggested 
as a potential therapeutic target for  osteoarthritis25.

Lastly, when comparing serum autoantibody profiles directly between the two RA subgroups, we found 3 
autoantibodies having higher abundances in ACPA+ RA compared with ACPA− RA (i.e., anti-HOMER2, anti-
PTK2, anti-TPM4); and 3 autoantibodies lower in ACPA+ RA compared with ACPA− RA (i.e., anti-TGIF2, 
anti-KAT7, anti-BATF) (Supplementary Table 7).

Functional associations of the autoantigen targets. Having identified differentially abundant 
autoantibodies in both subgroups of RA, we next set out to characterize the functions of the targeted human 
protein antigens (potential autoantigens) to gain a deeper understanding of subgroup-specific immune response 
to self-proteins. Functional enrichment (GO terms) using DAVID (“Materials and Methods” section) found 
that the top enriched (i.e., over-represented) biological processes of the targets covered a range of fundamental 
cellular functions, including programmed cell death, transcription, metabolism and biosynthesis, and signal 
transduction (Fig. 4). We identified 55 and 38 enriched biological processes from the targets of the aforemen-
tioned autoantibodies higher in ACPA+ RA and ACPA− RA, respectively (P < 0.05, Fig. 4A and Supplementary 
Table 8). The top 3 enriched biological processes of the targets of autoantibodies higher in ACPA+ RA were 
Cell Death, Apoptotic Process, and Programmed Cell Death (Fig. 4A, blue bars), possibly implicating dysregu-
lated programmed cell death in ACPA+ RA. Apoptosis, a normal process of programmed cell death, is critical 
in regulating and maintaining tissue growth and  homeostasis26. Although apoptosis is not known to induce 
an inflammatory response in the absence of disease, disruptions in apoptotic pathways have been reported in 
 autoimmunity27, such as in  SLE28. For the targets of autoantibodies higher in ACPA− RA, we found that the most 
highly enriched biological processes were related to gene expression, including DNA-templated Transcription, 
Transcription Initiation from RNA Polymerase II Promoter, and Cellular Response to Endogenous Stimulus 
(Fig. 4A, orange bars).

We identified 76 and 92 enriched biological processes from the targets of autoantibodies lower in ACPA+ RA 
and ACPA− RA, respectively (P < 0.05, Fig. 4B and Supplementary Table 9). Notably, all of the top 5 enriched 
biological processes for targets whose autoantibodies were lower in ACPA+ RA were related to either biosyn-
thetic or metabolic processes: Nucleobase-containing Compound Biosynthetic Process, Regulation of Nitrogen 
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Figure 2.  Serum autoantibodies with higher abundances in ACPA+ RA and ACPA− RA compared with healthy 
controls. Patients with (A) ACPA+ RA (n = 32) and (B) ACPA− RA (n = 30) show higher abundances in 22 and 
19 autoantibodies, respectively, compared with healthy controls (n = 30). In (A) and (B), the other RA subgroup 
is shown for comparison (far right). Two-sided Mann–Whitney U test (P < 0.05) and the Cliff ’s delta effect size 
(|d|> 0.33) were used to find autoantibodies with significantly higher abundances. Standard box-and-whisker 
plots (e.g., center line, median; box limits, upper and lower quartiles; whiskers, 1.5 × interquartile range; points, 
outliers) are used to show autoantibody abundances. Anti-GTF2A2 was found to have a significantly higher 
abundance in both ACPA+ RA and ACPA− RA subgroups.
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Figure 3.  Serum autoantibodies with lower abundances in ACPA+ RA and ACPA− RA than healthy controls. 
Patients with (A) ACPA+ RA (n = 32) and (B) ACPA− RA (n = 30) show lower abundances in 30 and 25 
autoantibodies, respectively, compared with healthy controls (n = 30). In (A) and (B), the other RA subgroup 
is shown for comparison (far right). Two-sided Mann–Whitney U test (P < 0.05) and Cliff ’s delta effect size 
(|d|> 0.33) were used to find autoantibodies of significantly lower abundances. Standard box-and-whisker plots 
(e.g., center line, median; box limits, upper and lower quartiles; whiskers, 1.5 × interquartile range; points, 
outliers) are used to show autoantibody abundances. Eight autoantibodies (anti-APEX1, anti-DAPK2, anti-
MAP4, anti-PSMD4, anti-SIK2, anti-SOCS5, anti-STAM2, and anti-TCF4) were found in common to both 
ACPA + RA and ACPA − RA subgroups.
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Compound Metabolic Process, Heterocycle Biosynthetic Process, RNA Biosynthetic Process, and Aromatic 
Compound Biosynthetic Process (Fig. 4B, blue bars). Additionally, the top 5 enriched biological processes for 
targets whose autoantibodies were lower in ACPA− RA were related to cell signaling or cellular response (Regu-
lation of Signal Transduction, Response to Peptide Hormone, Angiogenesis, Regulation of Anatomical Struc-
ture Morphogenesis, and Response to Organic Substance) (Fig. 4B, orange bars). Interestingly, regarding signal 
regulation, an imbalance of G-protein-coupled receptor (GPCR)-specific autoantibody levels was found to be 
associated with autoimmune disorders, including RA and  SLE29. Unraveling how serum autoantibodies in RA 
react to, and thereby dysregulate, these essential cellular functions may provide new avenues for identifying 
tractable therapeutic targets.

Autoantibody abundances are significantly correlated with RA disease activity in a sub‑
group‑specific manner. To determine whether serum autoantibodies reflect disease activity in RA, we 
examined for autoantibodies correlated with the Clinical Disease Activity Index (CDAI) (“Materials and Meth-
ods” section). To the best of our knowledge, we report for the first time 27 autoantibodies that have at least a 
moderate correlation with CDAI (|Spearman’s ρ|> 0.4 and P < 0.01) in either or both subgroups of RA (Fig. 5 
and Supplementary Table 10). Furthermore, we found that these correlations differed based on ACPA status, 
providing even further evidence of immune differences between the two RA subgroups. Specifically, 11 of the 
27 autoantibodies were significantly correlated with CDAI in ACPA+ RA, with 6 (for PYGB, EXT2, CDKN2B, 
FAS, GNA15, and MMP2) being positively correlated, and 5 (for MED4, RAB38, PAK2, AK1, and PELO) being 
negatively correlated. In addition, 15 among the 27 autoantibodies were significantly correlated with CDAI in 
ACPA− RA, with 8 (for SP1, TPM3, FRK, ELK1, CLK3, TPM1, DDIT3, and MARK3) and 7 (for VDR, CAPG, 
AHSG, CXCR4, EGR2, DCLK1, and ESR2) having positive and negative correlations with CDAI, respectively. 
Finally, abundances of 3 (for PELO, CLK3, and CISH) of the 27 autoantibodies were significantly correlated with 
CDAI in all RA patients (n = 62), with a subset of those already found to be significant in the ACPA+ RA (for 
PELO) and ACPA− RA (for CLK3) subgroups. Autoantibodies for Cytokine inducible SH2 containing protein 
(CISH) were positively correlated with CDAI (ρ = 0.44, P = 6.5 ×  10–4) when pooling both RA subgroups simulta-
neously (Supplementary Fig. 1), but not in either subgroup separately (Fig. 5, bottom).

The connections between serum autoantibodies and RA disease activity mentioned above have not been 
reported in prior studies. However, several of their protein targets have been previously linked to RA. For exam-
ple, we identified autoantibody abundances for Fas cell surface death receptor (FAS) as being positively correlated 
with CDAI in ACPA+ RA patients (ρ = 0.511, P = 0.005). The interaction of this receptor with its ligand is known 
to initiate a signaling cascade that leads to  apoptosis30. Chou et al. found that FAS proteins in synovial tissue were 
higher in patients with RA than in patients with osteoarthritis and post-traumatic joint  disease31. In addition, 
we found that autoantibodies for CXC chemokine 4 (CXCR4) displayed a negative correlation with CDAI in 
ACPA− RA patients (ρ = − 0.508, P = 0.007). Peng et al. found that CXCR4 levels in serum and joint synovial fluid 
strongly correlated with RA patients’ disease activity score-28 (DAS28)32. Our findings associating RA disease 
activity with anti-FAS and anti-CXCR4 autoantibodies support previous reports regarding the relevance of FAS 
and CXCR4 in RA, although identifying their precise roles is outside the scope of this study.

Discussion
This study addresses the following key questions: Are there differences in serum autoantibody abundances 
between ACPA+ RA and ACPA− RA? In particular, which serum autoantibodies in the two RA subgroups are 
either higher or lower in abundance compared with healthy controls? Which biological functions are the autoan-
tigen targets enriched in? Do any of the circulating autoantibodies correlate with disease activity in RA patients? 
To these ends, we used a multiplex autoantibody profiling assay on the serum of patients with ACPA+ RA and 
ACPA − RA. Previously, such multiplex autoantibody profiling has newly identified autoantibodies associated 
with  SLE18,33, COVID-1934, and  cancers35–37. Our statistical analysis of these data identified differentially abundant 

Figure 4.  Human protein antigens (potential autoantigens) targeted by the differentially abundant serum 
autoantibodies are enriched in fundamental cellular functions. The top 5 statistically enriched biological 
processes of the antigen targets of the autoantibodies found to be significantly (A) higher and (B) lower in RA 
subgroups (ACPA+ , ACPA− ) compared with healthy controls. Enriched (i.e., over-represented) biological 
processes were rank-ordered in descending order based on the modified one-tailed Fisher’s exact test P-values 
provided in DAVID.
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autoantibodies between subgroups of RA and healthy controls. Interestingly, anti-GTF2A2 was the only autoan-
tibody found to be higher in both ACPA+ RA and ACPA − RA; this provides further evidence of previously 
reported immunological differences between these two subgroups despite sharing similar  symptoms5,38, although 
the precise pathophysiological mechanisms—or potential influences of genetic  predisposition39,40—remain yet 
unclear. Functional enrichment analysis on the autoantibody targets showed that the autoantibodies could be 
involved in—and possibly interfering with—various essential biological processes, and differently so depend-
ing on the RA subgroup. Finally, not only did we find serum autoantibodies directly correlated with RA disease 
activity, but also we reported for the first time that these correlations differ based on ACPA status.

It has long been established that the presence or elevation of autoantibodies in circulation is a hallmark of 
 RA41. Despite this commonly known attribute of RA, we found a total of 47 unique autoantibodies lower in both 
RA subgroups compared with controls, possibly suggesting “missing” features of health; however, the reason for 
this finding is not known at this point. Notably, there were 8 common autoantibodies lower in both ACPA+ RA 
and ACPA− RA, including anti-APEX1, anti-STAM2, and anti-SOCS5. These could be natural autoantibodies 
(which are produced by the immune system to intentionally target self-antigens without triggering undesired 
autoimmune  disorders42) that aid in regulating normal homeostatic  processes43, clearing cellular debris and other 
waste products from dying  cells44, catalyzing enzymatic  reactions45, and training the adaptive immune system 
to protect against self-antigens that may induce a severe immune  response46. The protective function of natural 
autoantibodies has been generally ascribed to the IgM  class47; nevertheless, it is now beginning to be discovered 
that an IgG autoantibody repertoire exists in the blood of healthy  individuals48,49, and is considered to be highly 
individualized and stable in  adults48. Examining whether the IgG autoantibodies lower in RA subgroups play any 
causal role in attenuating RA severity, or whether any of these could even be utilized for therapeutic purposes, 
would be appealing topics for future studies.

As we demonstrate in our study, comprehensive serological profiling of autoantibodies can be instrumental in 
providing novel insights into potentially pathogenic or disease-modulating autoantibodies in RA; and into how 

Figure 5.  Serum autoantibodies in RA patients display significant correlations with CDAI. The strength of the 
relationships between autoantibody abundances and CDAI was measured in three groups: ACPA+ RA (n = 32), 
ACPA− RA (n = 30), and all RA (n = 62) patients. 27 different autoantibodies were significantly correlated with 
CDAI (|Spearman’s ρ|> 0.4 and P < 0.01).
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the disruption of natural autoantibody production might be connected to the disease. However, several limita-
tions of our study should be acknowledged when interpreting the results. First, although this exploratory pilot 
study reports potential autoantibody biomarker signatures of two RA subgroups, the relatively small sample sizes 
are likely not enough to fully represent the intricate characteristics of each study group. We accept that future 
studies are needed to confirm whether our results can be replicated in a larger independent validation cohort. 
Second, and in a related vein, our study is not a broad representation of patients with RA, as all study participants 
were of White ethnicity mostly from the Midwest region of the United States. Thus we emphasize caution when 
extending our findings to patients of different ethnic backgrounds (or geographies), considering the disparities 
in RA prevalence found among different  ethnicities50. Indeed, future studies will need to involve patients of dif-
ferent ethnicities and even those within the same ethnicity, while also recognizing important differences among 
individuals. Third, a few patients with RA collected for this current study had long-standing disease duration 
and received anti-rheumatic immunosuppressive drugs. In particular, patients using rituximab and abatacept 
are included, so it can be expected that some autoantibody titers are affected by such treatments. In future 
validation studies, we plan on targeting early-stage RA patients before treatment with immunosuppressants. 
Fourth, despite the multi-analyte detection strategy we took to simultaneously profile > 1600 autoantibodies, 
our entire results are still based on measurements from a single technique. Therefore, our findings may not be 
fully replicable across different autoantibody profiling platforms. Especially for diagnostic biomarker discovery 
purposes, our results will require validation of positive antibody titers or reactivity with autoantigens using 
traditional methods, such as ELISA and western blotting. Fifth, our findings are certainly not derived from the 
entire search space of serum autoantibodies, as it’s not currently technically feasible to include the full human 
proteome on the microarray chip (i.e., > 1 M proteoforms including all splice variants and all post-translational 
modifications). Nevertheless, the arrayed antigens are of high disease relevance (including autoimmune diseases, 
cancers, and neurological disorders) and enriched for specific families of cytosol and nuclear proteins (including 
kinases, transcription factors, signaling proteins, ribonuclear proteins, and cancer antigens); and therefore are 
well-suited for clinically-relevant biomarker discovery studies. Sixth, the microarray assay used in this study 
provides semi-quantitative abundance estimates of autoantibodies that recognize human proteins in only their 
native, unmodified state. Performing a similar analysis with autoantibodies reactive against post-translationally 
modified (e.g., (homo)citrullination, carbamylation) proteins would be an intriguing future direction. Seventh, 
we lose most of the significant (P < 0.05, Mann–Whitney U) “hits” after Benjamini–Hochberg correction. This 
could be attributed to multiple factors including a lack of strong differences (in serum autoantibody abundances) 
between study groups, and the large number of tests resulting from the high dimensionality of our screening 
platform. Despite their modest statistical significance, the observed differences nevertheless passed an additional 
criterion concerning the effect size (|Cliff ’s delta (d)|> 0.33). Finally, given the observational nature of this study, 
we cannot establish at this point whether the identified autoantibodies (or autoantigens) are actually involved in 
inflammation or other symptoms of RA. Deciphering how the autoantibodies are linked to pathogenic events at 
the site of disease (synovial fluid) lies at the forefront of our future research.

The autoantibodies reported herein are expected to motivate future studies examining their potential as useful 
clinical biomarkers in RA, especially as we move toward classifying patients based on their molecular  features51,52. 
In this regard, machine learning can translate large-scale datasets into more actionable information for RA, e.g., 
risk factors or predictors of disease course, as demonstrated in our previous  works53–55. Of note, there is yet no 
diagnostic laboratory test to confirm RA and differentiate it from other inflammatory arthritides in the absence 
of ACPA; in effect, ACPA− RA patients tend to be diagnosed well after the onset of disease, leading to delays in 
starting treatment and suboptimal long-term clinical  outcomes56. Identifying blood biomarkers specifically in 
ACPA− RA could greatly benefit patients by contributing to an earlier diagnosis, as a timely and focused patient 
management plan can limit disease progression and preserve the quality of a patient’s  life57.

Conclusions
We newly uncovered serum autoantibodies with significantly higher abundances in ACPA+ RA and ACPA− RA 
compared with healthy controls. In addition, we revealed for the first time that serum autoantibodies can have 
significantly lower abundances in these two RA subgroups compared with controls. Notably, not only did we 
find that serum autoantibodies correlate with RA disease activity, but also we reported that these correlations 
differ based on patients’ ACPA status. Our findings motivate future research into the immunological differences 
between ACPA+ RA and ACPA− RA, hopefully providing new insights into the need for different treatment 
approaches, and into potentially new autoantibody biomarker tests and therapeutic leads.

Materials and methods
Study participants, subject enrollment, and sample collection. The study population consisted of 
patients with RA attending the outpatient practice of the Division of Rheumatology at Mayo Clinic in Rochester, 
Minnesota. Eligibility required patients to be adults 18 years of age or older with a clinical diagnosis of RA by a 
rheumatologist based on the American College of Rheumatology/European League Against Rheumatism 2010 
revised classification criteria for  RA58. Patients were excluded if they did not comprehend English; were unable 
to provide written informed consent; or were members of a vulnerable population (e.g., incarcerated subjects). 
On the other hand, patients were eligible irrespective of the use of any particular medication and disease dura-
tion. This led to a total of 62 patients fulfilling the eligibility criteria. Clinical and demographic data, including 
age, sex, ethnicity, body mass index (BMI), smoking status, the numbers of tender and swollen joints, patient and 
evaluator global assessments, C-reactive protein (CRP, mg/L), and results for rheumatoid factor (RF, IU/mL) and 
anti-CCP (U/mL), were collected from the electronic medical records.
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Serum samples from RA patients were stored in our ongoing Mayo Clinic Rheumatology Biobank. This 
biorepository was created for long-term storage of diverse biological samples (e.g., serum, plasma, stool, white 
blood cells) from RA patients for use in research. In addition, serum samples from matched healthy donors 
attending the Mayo Clinic Biobank were used as controls. Subjects in the healthy control group were reported 
as not having any overt disease or adverse symptoms at the time of sample collection. All three study groups 
(i.e., ACPA+ RA, ACPA− RA, and controls) were matched based on subjects’ age, sex, smoking status, ethnicity, 
and BMI (P < 0.05, Fisher’s exact test). Additionally, the two RA subgroups were matched by disease duration, 
RF status, and medication use (P < 0.05, Fisher’s exact test). This manuscript follows the STrengthening the 
Reporting of OBservational studies in Epidemiology (STROBE) reporting guidelines for observational  studies59.

Clinical disease activity index. The Clinical Disease Activity Index (CDAI) is a numeric scale used to 
measure disease activity in RA. CDAI is calculated by the summation of four individual elements: Swollen Joint 
Count (0–28), Tender Joint Count (0–28), Patient Global Assessment of Disease Activity (0–10.0), and Evalu-
ator Global Assessment of Disease Activity (0–10.0)60. The full range of CDAI is 0–76. CDAI can be used to 
categorize RA disease activity into four states: Remission (CDAI ≤ 2.8), Low Disease Activity (2.8 < CDAI ≤ 10), 
Moderate Disease Activity (10 < CDAI ≤ 22), and High Disease Activity (CDAI > 22).

Sengenics immunome protein microarray. IgG autoantibody profiling of all serum samples was per-
formed using the Sengenics (Singapore) Immunome Protein Microarray. For biological fluids of very small 
sample volume, this high-density (multiplex) protein microarray can examine the IgG isotype autoantibody 
repertoire that binds to 1622 autoimmune- and cancer-related human protein targets in a single assay. These pro-
teins cover various protein families, including kinases, signaling molecules, cytokines, and transcription factors. 
Importantly, the autoantigen panel features full-length, correctly folded, native proteins (as the autoantibody 
targets) immobilized through a proprietary biotin carboxyl carrier protein (BCCP) onto its hydrogel-coated 
array surface. Therefore, the conformation of the epitopes is preserved, allowing highly specific and reproducible 
detection of autoantibodies.

All antigens on the array were expressed as full-length, properly folded recombinant fusions to a biotinyla-
tion motif in Sf9 insect cells using a baculoviral system, as previously  described61. Following cell lysis, crude 
lysates were printed onto streptavidin-coated hydrogel surfaces, allowing the single-step in situ immobilization 
and purification of each antigen in a manner that preserves the folded structure of each protein antigen; thus 
enabling specific detection of an autoantibody binding to biologically-relevant conformational epitopes in the 
surface of each antigen.

Autoantibody profiling assay protocol. Serum dilution. Frozen serum samples were randomized be-
fore being assigned to assay racks. Samples were stored at − 20 °C during experimental setup. Each sample was 
thawed in a shaking incubator at + 20 °C for 30 min, vortexed 3 times at full speed, and then spun down for 
3 min at 13,000 RPM in a microcentrifuge. Next, 5.625 μL of the sample was pipetted into 4.5 mL of Serum As-
say Buffer (SAB). The buffer contained 0.1% v/v Triton, 0.1% w/v BSA in 1 × phosphate-buffered saline (PBS) 
(20 °C) and vortexed 3 times. The tube was tilted during aspiration to ensure that the serum was sampled below 
the lipid layer at the top but not from the bottom of the tube in case of any sediment. This serum dilution process 
was carried out in a class II biological safety cabinet. Batch records were marked accordingly to ensure that the 
correct samples were added to the tubes.

Serum hybridization onto array. The array was removed from the storage buffer, placed in a slide box and rack 
with 200 mL cold SAB, and shaken on an orbital shaker at 50 RPM for 5 min. After the slides were rinsed entirely, 
they were placed with the array side up in a slide hybridization chamber with individual sera that had been 
diluted earlier. All slides were scanned and incubated on a horizontal shaker at 50 RPM for two hours at 20 °C.

Array washing after serum binding. The protein array slide was then rinsed twice in individual “Pap jars” with 
30 mL SAB, followed by 200 mL of SAB buffer in the slide staining box for 20 min on the shaker at 50 RPM at 
room temperature. All slides were transferred sequentially and in the same orientation.

Incubation with Cy3‑anti IgG. Binding of IgG was detected by incubation with Cy3-rabbit anti-human IgG 
(Dako Cytomation) labeled according to the manufacturer’s recommended protocols (GE Healthcare). Arrays 
were then immersed in a hybridization solution containing a mixture of Cy3-rabbit anti-human IgG solution 
diluted 1:1000 in SAB buffer for 2 h at 50 RPM in 20 °C.

Washing after incubation with Cy3‑anti IgG. After the incubation, each slide was dipped in 200 mL of SAB 
buffer 3 times for 5 min at 50 RPM at room temperature. Excess buffer was removed by immersing the slide in 
200 mL of pure water for a few minutes. Slides were dried for 4 min and stored at room temperature until scan-
ning on the same day. Hybridization signals were measured with a microarray laser scanner (Agilent Scanner) at 
10 μm resolution. Fluorescence levels were detected according to the manufacturer’s instructions, whereby each 
spot is plotted using Agilent Feature Extraction software.

Image analysis and data extraction. To extract quantitative data from the slides, image analysis was 
utilized to evaluate the number of autoantibodies present in each serum sample by measuring the median inten-
sities of all the pixels within each probed spot. A raw .tiff image file was generated for each slide (sample). Auto-
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matic extraction and quantification of all the pixels in each spot on the array were performed using GenePix 
Pro 7 software (Molecular Devices), which provides statistics for each probed spot on the array. This includes 
the mean and median of the pixel intensities within a spot and its local background. A GAL (GenePix Array 
List) file for the array was generated to aid the image analysis. This file contains the information of all probed 
spots and their positions on the array. Following data extraction, a GenePix Results (.GPR) file, which contains 
information for each spot (e.g., Protein ID, protein name, foreground intensities, background intensities), was 
generated for each slide.

Data handling and pre‑processing. The quadruplicate spots for each antibody were measured and aver-
aged for each slide (Supplementary Information). This resulted in a data sheet that contains both foreground 
and background intensities of each spot represented in relative fluorescence units (RFUs). Unlike antibody titer 
tests, RFUs are not a measure of positivity or the prevalence of each autoantibody. Raw data can be found in 
Supplementary Table 11. Raw RFU values from the microarrays were quantile normalized before all analyses 
described below.

Feature selection prior to principal component analysis. Principal component analysis (PCA) was 
used to project the autoantibody profiles onto an ordination plot. Autoantibody features deemed invariant across 
all study participants were removed prior to PCA, as they were assumed to not significantly contribute to the 
underlying variance in the dataset. For this, a one-way ANOVA test was performed on each autoantibody feature 
across all profiles, and the subset of those that were statistically significant (P < 0.05) was utilized for PCA.

Identifying differentially abundant autoantibodies. An autoantibody was considered differentially 
abundant between two study groups when found to be statistically significant (P < 0.05, Mann–Whitney U test) 
with medium effect size (|Cliff ’s delta (d)|> 0.33, as defined  in62). Cliff ’s delta, a non-parametric measure of effect 
size, tells how often values in one group are larger than those in the second group.

Functional enrichment analysis of antigen targets. For a set of autoantibodies, functional enrich-
ment analysis was performed on the Gene Ontology Biological Process (GOTERM_BP_FAT) annotations of 
their target antigens using the DAVID online  tool63. A P-value of 0.05 from a modified one-tailed Fisher’s exact 
test was used as the significance cutoff.

Spearman correlations between Clinical Disease Activity Index and autoantibody abun‑
dances. The Spearman correlation coefficient ρ was used to measure the strength of the relationship between 
the patient CDAI scores and autoantibody abundances. |ρ|> 0.4 and P-value < 0.01 were chosen as the signifi-
cance cutoffs.

Ethics approval and consent to participate. This study was approved by the Mayo Clinic Institutional 
Review Board (No. 14-000616 and No. 08-007,049) in accordance with the Declaration of Helsinki. All methods 
and procedures were performed in accordance with the Mayo Clinic Institutional Review Board guidelines and 
regulations. All patients provided written informed consent.

Data availability
Source code and raw data used to generate the results presented in this study are available at: https:// github. com/ 
jaeyu nsung/ RA_ Autoa ntibo dies_ 2023.
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