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Peritoneal autoantibody profiling
Identifies p53 as an autoantibody
target in endometriosis
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Objective: To map the peritoneal autoantibody (AAb) landscape in women with endometriosis.

Design: Case-control laboratory study.

Setting: Academic medical and research units.

Patient(s): Women who presented with or without endometriosis.

Intervention(s): None.

Main Outcome Measure(s): Using native-conformation and citrullinated modified protein arrays, proteome-wide analysis of AAbs
against 1,623 proteins were profiled in peritoneal fluids (PFs) of 25 women with endometriosis and 25 women without endometriosis.
Result(s): In women with endometriosis, the median number of AAbs detected was 4, including AAbs that targeted autoantigens
involved in implantation, B-cell activation/development, and aberrant migration and mitogenicity. Forty-six percent of women
with endometriosis have >5 peritoneal AAbs. Conversely, in women without endometriosis, the median number of detected AAbs
was 1. Autoantibodies recognizing tumor suppressor protein p53 were the most commonly detected AAbs, being present in 35% of
women with endometriosis, and p53 AAb was associated with a monocyte/macrophage-like PF cytokine signature. Further
investigation of the global reactivity of AAbs against citrullinated PF antigens by peptidylarginine deiminase enzymes 1, 2, and 6
revealed anticitrullinated p53 as the only AAb target elevated and citrullinated by all 3 peptidylarginine deiminase isotypes.
Furthermore, unsupervised hierarchical clustering and integrative pathway analysis revealed that 60% of women with
endometriosis-associated infertility were positive for AAbs, which are involved in platelet-derived growth factor, transforming
growth factor-8, RAC1/PAK1/p38/MMP2 signaling, LAT2/NTAL/LAB-mediated calcium mobilization, and integrin-mediated cell
adhesion.

Conclusion(s): Together, our data identify peritoneal autoimmunity in a significant subset of women with endometriosis, with impli-
cations on infertility and disease pathophysiology. In these patients, p53 was identified as the most frequent PF AAb target, which was
present in both the native and citrullinated forms. (Fertil Steril® 2023;ll:ll-M. ©2023 by American Society for Reproductive
Medicine.)
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initiator of the disease (2). The appearance and ineffective
clearance of these foreign and cell debris, including antigens
in extrauterine locations during retrograde menstruation,
potentially provoke autoimmune responses, immunologic
tolerance, or rejection of the autograft with alloantigenic
potential (3).

The plausibility of endometriosis being considered an
autoimmune disease has been postulated, insofar that endo-
metriosis meets most of the classification criteria of an auto-
immune disease, and there is deregulation of the apoptotic
process (4). Because endometriotic lesions originate from
autologous cells containing self-antigens, it can be speculated
that the abnormal exposure or presentation of these antigens
facilitates an autoimmune response. This follows the discov-
ery of immunoglobulin (Ig)G, IgM, and IgA autoantibodies
(AADbs) directed against cell-derived antigens, such as phos-
pholipids and histones (5). Antiendometrial and antiovarian
AAbs against transferrin and alpha 2-HS glycoprotein were
found in peritoneal fluids (PFs) of women with endometriosis
(6, 7). Autoantibodies against endometrial and ovarian tissue
in sera, vaginal, and cervical secretions in women with endo-
metriosis suggest autoimmune dysregulation (6) and organ
specificity (8). Furthermore, abnormalities in endometrial
AAbs strongly suggest a role in endometriosis-associated
infertility (EAI) (9). The association of endometriosis with
autoimmune diseases and increased incidence of AAbs
with endometriosis provide further support (3, 10-13).
Interestingly, treatment with danazol or gonadotropin-
releasing hormone analogs, which are commonly used as
first- or second-line therapies for the treatment of endometri-
osis, suppressed the AAD levels (14, 15).

A defective peritoneal environment characterizes endo-
metriosis, by which the PF rife with cytokines bathes the peri-
toneal cavity and surrounds endometriotic lesions (16). B-cell
activating factor (BAFF or BLyS), a cytokine necessary for
normal B-cell development, was up-regulated in endometri-
osis (17). Pathological analyses reported the presence of
plasma cells (precursors of B cells), atypical B cells, and acti-
vated macrophages in endometriotic lesions (17). Intrinsic de-
fects in peritoneal macrophages in endometriosis may also
contribute to autoimmunity. Macrophages are important im-
mune cells that maintain immune homeostasis via phagocy-
tosis of foreign matter, apoptotic or necrotic cells, and are
recruited to the peritoneum where they are prominently asso-
ciated with endometriosis (18-20). Dysregulation in these
immune cells promotes skewed tolerogenic peritoneal
environments in endometriosis. Immunoglobulin G AAbs
are approximately 150 kDa, and any interaction or
exchange of AAbs in the PF with the circulation is limited
due to the semipermeability of the peritoneum membrane
(21). This, therefore, presents a unique microenvironment
where locally produced AAbs are ineffectively cleared and
retained in the peritoneal cavity and PF of women with
endometriosis.

Although examples of autoimmune responses have previ-
ously been described, the comprehensive breadth of AAb re-
activities in endometriosis remains undetermined. In this
study, an integrated proteome-wide and bioinformatic anal-
ysis of >1,600 functional IgG native and citrullinated AAbs

was performed in PFs of patients with endometriosis. We
found that in close to half of patients with endometriosis,
there are diverse autoreactivity and elevated AAb levels that
target biological processes related to fertility, autoimmunity,
and endometriosis pathophysiology. This is the first report
that identified both the native and citrullinated forms of
p53 as PF AAb targets in endometriosis. Citrullination is a
posttranslational modification of arginine side chains into
citrulline that produces non-self-neoepitopes, dramatically
altering immunogenicity and driving further AAb production
(22). Stratification by anticitrullinated p53 AAb positivity
found a monocyte/macrophage PF cytokine signature.
Together, these findings have important implications for
stratification in endometriosis and the development of new
therapeutic strategies against a subset of patients with
endometriosis.

MATERIALS AND METHODS
Study Design and Patient Enrollment

Patients who underwent laparoscopic procedures at the KK
Women’s and Children’s Hospital, Singapore, for various in-
dications, such as suspected endometriosis, infertility, sterili-
zation procedures, and/or pelvic pain, were recruited into the
study. Women provided written informed consent for the
collection of samples under Centralized Institutional Research
Board approval (CIRB 2010-167-D).

The exclusion criteria include menstruating patients,
postmenopausal patients, anovulatory patients, patients on
any form of hormonal therapy for at least 3 months before
laparoscopy, and other potentially confounding diseases,
including diabetes, rheumatoid arthritis, inflammatory bowel
disease, multiple sclerosis, and systemic sclerosis. Diagnostic
laparoscopy was performed on all patients, with careful in-
spection of the uterus, fallopian tubes, ovaries, pouch of
Douglas, and pelvic peritoneum by gynecologists subspecial-
izing in reproductive endocrinology and infertility. The PF
was prepared as previously described (8), in line with the
Endometriosis Phenome and Biobanking Harmonization
Project Standard Operating Procedures (23). The presence of
endometriosis was systematically recorded and scored ac-
cording to the revised American Fertility Society classifica-
tion of endometriosis (24, 25) and classified as women with
endometriosis (EM+, N = 25) or without endometriosis
(EM—, N = 25). Women with infertility with endometriosis
(EM+ EAI, N = 15) and without endometriosis (EM— EAI;
N = 13) were extracted for the subsequent analysis. Patient
characteristics are shown in Supplemental Table 1 (available
online).

AAb Proteomics

Proteome-wide AAb profiling used the functional protein Im-
munome microarray platform (Sengenics, Singapore,
Singapore), covering 1,623 wild-type antigens
(Supplemental Table 2). This AAb protein array uses a
compact, folded, biotinylated, domain with approximately
80 amino acid residues derived from the Escherichia coli
biotin carboxyl carrier protein that preserves the structure
and function of the embedded antigens, thus offering
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exquisite selectivity and specificity of bounded AAbs (26, 27).
The PF samples were diluted 1:200 in 2-mL dilution buffer
(0.19% Triton X100 [v/v] and 0.1% bovine serum albumin
[w/v] in phosphate-buffered saline) and applied to the array.
The arrays were incubated in Quadriperm dishes (Greiner
Bio One, Stonehouse, United Kingdom) and placed on a hor-
izontal shaker at 50 rpm for 2 hours. After several washes,
anti-human IgG was diluted 1:1,000 in assay buffer and
Cy3-rabbit anti-human IgG (Dako Cytomation, Glostrup,
Denmark) by incubation for 2 hours according to the manu-
facturer’s recommendations. The array was washed and dried
by centrifugation. All arrays using a microarray scanner
(Axon 4200AL with GenePix Pro Software; Molecular De-
vices, San Jose, CA) and fluorescence of labeled IgG were de-
tected according to the manufacturer’s instructions. The
interaction between microarray antigens and PF AAbs was
detected as fluorescence of the bound fluorescently labeled
IgG at the protein-specific position on the microarray. The in-
tensity of fluorescence is proportional to the amount of AAb
present in the PF. The local surrounding background intensity
for each spot on the array was automatically subtracted from
the relevant foreground intensity to give the net intensity for
each spot; the median net intensity, also known as relative
fluorescence units, was calculated from the quadruplicates
of each antigen and was used for further analysis
(Supplemental Fig. 1). This was applied across all spots and
for cases and controls. All arrays passed quality control tests.
The mean coefficient of variation percentage (CV%) of all pro-
tein replica spots across all samples was 8.12% (Supplemental
Fig. 2A), and the CV% of Cy3-labeled biotinylated bovine
serum albumin, which served as the positive control across
slides and as a housekeeping probe for normalization of
signal intensities across samples, was 8.08% (Supplemental
Fig. 2B).

Citrullination Proteomic Analysis

The PF samples from 6 EM+ patients and 6 EM— women were
diluted at 1:100 in dilution buffer, vortexed, and spun down.
Subsequently, 30 uL of the sample was pipetted into 3 mL of
wash buffer containing 0.2% v/v Tween 20 in phosphate-
buffered saline and vortexed. Human peptidylarginine deimi-
nase (PAD)1, PAD2, and PAD6 were chosen for further char-
acterization because of their expression in the uterus and
ovaries and importance to fertility (28-30) and are,
therefore, relevant to endometriosis. Peptidylarginine
deiminase 1, PAD2, and PAD6 were incubated on the
protein array for the enzymatic conversion of arginine to
citrulline. The protein array used adopted the correct folding
of proteins (26), providing a more accurate reflection of
in vivo functional citrullination. Briefly, each slide was
rinsed in 3-mL wash buffer for 5 minutes. When the slides
were rinsed completely, they were blocked in CT100plus
blocking buffer for 1 hour. All slides were then washed 3 X
5 minutes in wash buffer at room temperature. The slides
were then incubated with 3 mL of 1 ug/mL of human PADI,
PAD2, or PADG, covered with aluminum foil, and incubated
for 3 hours at 37°C at 50 rpm. The slides were washed for 3
x 5 minutes in wash buffer and then incubated with diluted
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PF samples on a horizontal incubator at 20°C for 2 hours.
The citrullination protein array was then incubated with an
anticitrulline antibody and fluorescently labeled detection
antibody to detect the citrulline groups. Detection and hybrid-
ization signals were performed as previously described. The
CV0% of the intraprotein, intraslide, and interarray for all pro-
teins and control probes of PAD1, PAD2, and PAD6 citrulli-
nated protein arrays were 9.20%, 8.35%, and 6.63%,
respectively, below the quality control limit of 15%.

Multiplex Inmunoassay Analysis

The levels of 48 cytokines were measured in the PF fluid using
a multiplex suspension bead immunoassay (BioRad, Hercules,
CA; Supplemental Table 3) as previously described (16).
Briefly, 10 uL of PF was mixed with 10 uL of primary
antibody-conjugated magnetic beads on a 96 DropArray plate
(Curiox Biosystems, Singapore) and rotated at 450 rpm on a
plate shaker for 120 minutes at 25°C while protected from
light. Subsequently, the plate was washed 3 times with
wash buffer on the LT210 Washing Station (Curiox Bio-
systems) before adding 5 uL of the secondary antibody and
rotating at 450 rpm for 30 minutes at 25°C protected from
light. The plate was washed 3 times with wash buffer, and
10 uL of streptavidin-phycoerythrin was added and rotated
at 450 rpm for 30 minutes at 25°C protected from light. The
plate was washed 3 times with wash buffer, reading buffer
was then added and transferred to a 96-conical-well microti-
ter plate, and the samples were read using the Bio-Plex Lumi-
nex 200 (BioRad). All samples were run in duplicates, and the
mean was reported. Quantitation of the 48 cytokines in each
sample was then determined by extrapolation to a 6- or 7-
point standard curve using 5-parameter logistic regression
modeling and concentration reported in pg/mL. Assay CV
averaged < 129%. Calibrations and validations were performed
before runs and every month, respectively.

Data Analysis

For statistical analyses, parametric and nonparametric tests
were used, with statistical significance set at P<.05. Hierar-
chical clustering was completed on the patients with infer-
tility using the median distance and Manhattan clustering
and portrayed as a heatmap. The concept and definition of
penetrance (and of penetrance fold change [pFC]) have been
adapted directly from the genetics field and seek to deal
more appropriately with the analysis of markers, such as
AAb markers that may be present at relatively low frequencies
in a population and that would, therefore, not be found by ¢
tests because of the high heterogeneity within the diseased
cohort. Therefore, in our analysis pipeline, penetrance
referred to the proportion of individuals with an AAb against
a particular antigen. In the pFC method, antigens in the data-
set that had a net intensity value in the EM+ cohort that was
greater than 2 standard deviations of the mean net intensity
measurements made for each antigen in the control cohort
(EM—) were first identified; we then filtered that antigen list
on the basis of a minimum frequency for each individual in
the EM+ cohort on the basis of a cutoff of 4%, and a fold
change for each surviving antigen was calculated, on the
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basis of the comparison of the mean net intensity of the anti-
gen in EM+ individuals where it is present, relative to the net
intensity of that antigen in the control cohort. Equations on
pFC are shown in Supplemental Figure 3. To understand the
change and ultimately the importance in interpretation of
AAbs associated with endometriosis, a fold change of >2
was used. A fold change of > 2 was a better eliminator of po-
tential spurious background signals that could have arrived
from concentration-driven, nonselective binding because
there were fewer AAbs left after making a fold change cutoff
from > 1.5 (Supplemental Table 4). As the fold change level
increased to that of >3, the number of AAbs significantly
decreased, which suggested too stringent a cutoff. In addition,
in determining significant fold change cutoff, defined using
AAbs levels of >2 SD of the control population, a fold change
>2, but not 1.5, fit into the criteria.

Pathway Enrichment Bioinformatic Analysis

Functional enrichment data were obtained from ToppGene
Suite on the basis of Gene Ontology, pathways, and disease,
using the ToppFun tool (31). P values were calculated using
the probability density function and false discovery rate Ben-
jamini and Hochberg corrected, with a corrected P value (g <
0.05). The OpenTargets Platform was used to find proteins
associated with autoimmunity and endometriosis (32). Here,
the overall association scores between a target and disease
were calculated using data from multiple sources and
adjusted depending on data source and type. A value of 1 rep-
resented the most associated. These proteins were cross-
referenced to the proteins identified as AAbs to highlight pro-
teins known to be involved in autoimmunity, endometriosis,
or both.

RESULTS

Diversity of Peritoneal AAbs in a Subset of Patients
with Endometriosis

Of the analyzed 1,623 IgG AAbs, 351 discrete AAbs were pu-
tatively considered as significant (pFCc.se, =>2; penetrance
Frequencycase, =20%; Supplemental Table 4). Previously
identified PF and endometrial tissue AAbs in endometriosis,
antihistone H1.2, and anti-AHSG AAbs were validated (pFC,
3.59 and 3.24; penetrance Frequencycase, 20% and 249,
respectively; Supplemental Fig. 4A and B) (9, 33). In EM+ pa-
tients, 84.1% of PF AAbs were found at frequencies of 4-6
(Fig. 1A). This contrasted with EM— controls, whereby
95.1% of PF AAbs were presented at a low frequency of 1
and 2 (Kruskal-Wallis test corrected with Dunn'’s test for mul-
tiple comparisons, P<.0001). By hierarchical clustering, a
cluster of EM+ cases (46% or 12/25) with strong autoimmune
profiles (> 5 significant AAbs per patient; mean pFC, 2.24 vs.
0.67 for the rest of EM+; P<.0001 for both the mean or me-
dian fold change and number of AAbs with a pFC of > 2) were
observed (Fig. 1B and C), although the cluster was not associ-
ated with menstrual phase, age, or pregnancies. Comparing
the proliferative and secretory phases in EM—, there were
21 significantly different AAbs (Supplemental Table 5). In
EM+, there were 6 significantly different AAbs, suggesting

the retention of AAbs in endometriosis across the menstrual
cycle. None of the high-frequency AAbs were affected by
the menstrual cycle phases. Many of the EM+ AAbs included
markers of fertility such as decidualization (PRL) and implan-
tation (ACVR2A and SMADS5), autoimmunity such as B-cell
activation and development (BANK1 and FLI1), endometriosis
pathophysiology such as migration (TIMP3 and MMP24), and
mitogenicity (PDGFB, PDGFRL, FGFR1, FGFR2, IGF2, and
VEGF-D) (Fig. 1B). No evidence of autoimmunity against cy-
tokines or chemokines was observed (Supplemental Fig. 4C to
J). Pathway enrichment indicated that the AAbs were found to
elicit MAPK (g = 4.68 x 10~ 7), platelet-derived growth factor
(PDGF) (g = 5.51 x 1077), LKB1 (g = 2.74 x 10™°), FGF (g =
4.81 x 10~°), interleukin (IL)-2-mediated signaling (g = 3.05
x 107°), and Toll-receptor signaling (¢ = 1.13 x 107 °)
(Supplemental Table 5 and Fig. 1D). The 351 AAbs were
cross-referenced to potential targets under “Autoimmunity”
and “Endometriosis” disease categories using the OpenTargets
Platform. A total of 149 AAbs were found to be associated
with “Autoimmunity,” 4 AAbs were found to be associated
with “Endometriosis,” and 74 AAbs overlapped with both
“Endometriosis” and “Autoimmunity” (Supplemental
Tables 6 and 7 and Fig. 1E).

Elevated Levels of Antinative and Citrullinated
p53 Antibodies in Endometriosis Is Associated
with Monocyte-Associated Cytokine Profile

The most frequently occurring EM+ AAb was p53, which was
detected in 35% of EM+ patients and 58% in the high-
autoimmunity EM+ cases (Fig. 2A). The anti-p53 AAb level
was significantly elevated in EM+ patients compared with
that in EM— patients (mean pFCc,se, 6.46, vs. mean pFCeontrol,
0) and was not associated with American Society for Repro-
ductive Medicine stage, age, or menstrual phase. The PF of
EM— patients did not show positivity for anti-p53. Therefore,
anti-p53 AAb was used to stratify EM+ patients into p53"&"
(pFCps3 > 2.0) and p53oY (pFCps3 < 2.0) for further investiga-
tion of whether the presence of anti-p53 AAb influenced the
peritoneal inflammatory environment and the frequency of
citrullinated p53.

Because p53 provokes inflammatory responses by modu-
lating immunologic changes (34, 35), we hypothesized that
the presence of anti-p53 AAbs altered the PF cytokine milieu.
To test this, we performed multiplex suspension bead immu-
noassay of PF cytokines on EM+ p53high samples compared
with EM+ p53"" and EM— samples. Forty PF cytokines
were detected (Supplemental Table 3). A striking monocyte/
macrophage-related chemokine signature comprising of
significantly elevated levels of IL-6, interferon-y (IFNvy),
monocyte chemoattractant protein (MCP)1, and MCP3 and
reduced monokine induced by IFNvy levels distinctly marked
p53high samples (Fig. 2B). Monocyte chemoattractant protein
1 and MCP3 are monocyte/macrophage chemoattractants
(36). The secretion of monokine induced by IFN+y by predom-
inantly monocytes/macrophages is induced by IFNy and
mediated by the Janus kinase-signal transducer and activator
of transcription signaling pathway. The IL-6 levels were
significantly higher in p53™&" than those in EM—.
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Women with endometriosis had diverse peritoneal autoantibodies (AAbs). (A) Distribution histogram of the frequency of positive AAbs with a
penetrance fold change of >2, showing that more women with endometriosis (EM-) (n = 25) possessed higher frequencies of AAbs, median
of 4, than women without endometriosis (EM— controls), with a median of 1 AAb (n = 25). (B) Heatmap of 351 AAb levels in women with (n
= 25) and without (n = 25) endometriosis. The AAb levels were Z score normalized against the control population mean and standard
deviation, with Z scores of >2 corresponding to positive AAb levels. There were 3 major AAbs clusters: control; endometriosis; and
endometriosis with high autoimmunity. Endometriosis with high autoimmunity, >5 AAbs at a fold change of >2; endometriosis with weak
autoimmunity, patients with endometriosis who did not meet the criteria. When comparing the mean or median fold change in all AAbs per
patient, weak vs. high autoimmunity had a P value of <.0001. Hierarchical clustering was completed using the median distance and
Manhattan clustering. (C) Bar graphs of EM+ cases and EM— controls with strong (=5 significant AAbs per patient) and weak (<5 significant
AADbs per patient) autoimmune profiles. (D) Pathway enrichment g values (false discovery rate Benjamini-Hochberg) indicated that positive AAbs
in endometriosis were found to elicit pathways involved in MAPK (g = 4.68 x 10 7), PDGF (@=5.51 x 10 7%, Toll-receptor signaling cascade
(@=1.13 x 107°), LKB1 (g = 2.74 x 107°), interleukin (IL)-2-mediated signaling (g = 3.05 x 107°), and FGF (g = 4.81 x 107°) as top ranked
pathways. (E) Number of the 351 AAbs associated with autoimmunity, endometriosis, or both, as determined by the OpenTargets Platform.

Harden. Endometriotic peritoneal autoantibodies. Fertil Steril 2023.
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For the study of citrullinated targets, we pooled PF sam-
ples from EM+ patients on the basis of their levels of anti-p53
AAD into 2 anti-p53 AAb groups (p53™&" and p53"") and
compared them with those from EM— women (Fig. 3A).
Embedded antigens in the protein array were then citrulli-
nated in vitro with PAD isoforms 1, 2, and 6 and probed using
anticitrullinated antibodies in the PF samples. Known citrul-
linated proteins keratins (KRT15 and KRT19), vimentin (VIM),
and aldolase (ALDOA) were observed, thereby validating the
assay (Supplemental Fig. 5A). The anti-p53 AAb groups had
different citrullination patterns depending on whether they
were incubated with PAD1, PAD2, or PAD6, with PAD1
generating the most autoantigens (Fig. 3B and
Supplemental Fig. 5B). In the p53"€" group 72 citrullinated
AAbs overlapped in AAbs generated by the 3 PADs and in
the p53'°* group, only 1 overlapped. Overall, the list of antici-
trullinated AAbs overlapped minimally with that of nonci-
trullinated AAbs. Interesting, citrullinated p53 was the only
target among the anticitrullinated AAbs that were common
to PAD1, PAD2, and PAD6 and noncitrullinated AAbs
(Fig. 3C). It was approximately 1.6 times higher in the
p53"" group than in the p53'°% EM+ and EM— groups
(Fig. 3D).

Discovery of Novel Peritoneal AAbs and p53 in EAI

Autoimmunity in EAI potentially works through different pu-
tative mechanisms or etiology (37). Additional analysis on 15
infertile EM+ patients and 13 infertile EM— age- and
ethnicity-matched healthy controls selected from the afore-
mentioned study was performed. The levels of 109 AAbs
were elevated in EAI EM+ subjects (pFC, > 2; penetrance Fre-
qUeNCycase, = 20%). Moreover, 60% (or 9/15) of EAI cases
testing positive for multiple AAbs (>2 AAbs with elevated
levels) were observed (Fig. 4A, patients denoted with purple
status). No AAb level was elevated in infertile
EM— individuals. The most prevalent AAb in EAI patients

was TAF9 (frequency, 33.3%). Anti-p53 AAb was prevalent
at 27% frequency in EAI (Fig. 4B). Twenty-seven percent of
them were also positive for BAD, SEPTIN4, C1D, NFE2L2,
MAPK1, ELF1, CSNK1G1l, COQ8A, and ZNRDI1
(Supplemental Table 8). Interestingly, anti-ceramide trans-
port protein (also known as COL4A3BP) AAbs levels were
elevated in 20% of cases, consistent with our earlier sphingo-
lipidomic analysis of aberrant ceramide metabolism in EAI
(38). When examining AAbs that were common between
endometriosis and autoimmunity, analysis of 24 proteins
(22%), including p53, showed that these were found to be
associated with both endometriosis and autoimmunity
(Supplemental Table 9). Integrative pathway analysis demon-
strated enrichment in AAbs involved in PDGF signaling (g =
7.62 x 107°), transforming growth factor-g signaling (q =
0.0007), LAT2/NTAL/LAB-mediated calcium mobilization (g
= 0.0007), integrin-mediated cell adhesion (¢ = 0.0009),
and the RAC1/PAK1/p38/MMP2 signaling axis (¢ = 0.0009)
(Supplemental Table 10). The enrichment of NTAL/LAB/
LAT2 pathway, found in activated B cells and monocytes
(39), further suggests the implication of B-cell mediated auto-
immunity in EAL Integrin-mediated and transforming growth
factor-g@ pathways have been implicated in fertility and endo-
metriosis (40-42).

DISCUSSION

Peripheral and endometrial AAbs that are associated with
endometriosis have been reported (5, 43). In this study, we
investigated 1,623 immunoreactive antigens against extra-
cellular IgG AAbs found in PF, confirming the detection of
AHSG and histones reported in earlier studies and reporting
herein on novel AAbs. Close to half of EM+ patients (46%)
have a strong autoimmune profile with >5 AAbs detected
per patient. The female preponderance to an increased likeli-
hood of autoimmunity and endometriosis-associated
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autoimmunity may be explained by estrogen and retrograde
menstruation. Activation-induced deaminase deaminates cy-
tosines at immunoglobulin loci, initiating a cascade of events
that lead to somatic hypermutation and class switch recombi-
nation, turning IgG AAbs pathogenic. Activation-induced
deaminase has been reported to be estrogen-induced (44),

and in ovarian tissues where the estrogen levels are high,
deleterious insertions of point mutations or the resolution of
double-strand breaks potentially accumulates over time,
generating pathogenic AAbs (44). The presence of live endo-
metrial cells and cellular debris in the peritoneal cavity as a
result of retrograde menstruation and their defective
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clearance in endometriosis presents a favorable environment
that results in abnormal exposure of autologous antigens to
the immune system and, therefore, triggers the initiation of
an autoimmune response in the peritoneal environment (45,
46). In this study, we showed diverse peritoneal autoimmune
responses that varied from patient to patient with endometri-
osis. One possibility is that autoreactive lymphocytes expand
polyclonally, have different antigen receptors on their sur-
face, and, thereby, recognize different targets. Another possi-
bility is the initial autoimmune response in an inflammatory
peritoneal environment expands to include self-proteins
through linked recognition and intermolecular epitope
spreading.

The tumor suppressor p53, encoded by the TP53 gene, is a
deoxyribonucleic acid motif binding transcription factor that
governs core cellular programs to ensure cell and tissue ho-
meostasis, including arresting cell cycle progression and
apoptotic response to cellular stress (47). As evidenced in Pro-
teinatlas, p53 is barely detectable in endometrial stromal or
epithelial cells (48, 49) but is highly expressed in monocytes
and B and T cells (50). Although p53 expression in endometri-
osis has been controversial (51-53), our data are consistent
with anti-p53 AAbs being restricted to patients with mutated
forms of p53. Different patterns of TP53 mutations have been
reported in endometriosis, including missense mutations,
deletion of the TP53 locus, and loss of heterozygosity that
can contribute to or trigger an immune reaction by causing
self-immunization of non-wild type p53 (54-56). There is a
strong correlation between the frequency of anti-p53 AAbs
and that of p53 mutations in certain types of cancer, suggest-
ing that p53 mutations are associated with the generation of
these AAbs (54). Studies in mice revealed the close association
of p53 deficiency with the development of autoimmune and
inflammatory diseases (57, 58). In particular, monocytes/
macrophages deficient in p53 inefficiently clear apoptotic
and necrotic cells, and the failure to clear dying cells can
lead to accumulation of autoantigens that promote further
generation of autoimmunity and chronic inflammation (57,
59). Citrullinated p53 has previously been reported (60, 61)
but not in endometriosis. This study showed that women
with endometriosis have citrullinated anti-p53 AAbs. The in-
cubation of PF with citrullinated antigens converted by
PAD1, PAD2, and PAD6 identified a diversity of anticitrulline
AAbs, including p53, suggesting that PADs found within the
peritoneal environment are responsible for citrullinating pro-
teins. Our finding of anticitrullinated p53 AAbs further ren-
ders p53 as a potential target of pathological autoimmunity
in endometriosis.

There are important biomedical and clinical ramifications
of this study. Developing and/or identifying relevant animal
models would be instrumental in allowing the investigation
of various aspects relevant to the role of PF AAbs in general,
and of anti-p53 AAbs in endometriosis and EAI, and for the
testing of plausible treatment options (62). Autoantibodies
recognizing p53 were the most frequently detected in 35%
of EM+ patients. If anti-p53 AAbs and associated signaling
pathways represent a set of novel underlying pathogenic
mechanisms in endometriosis, the prediction is that anti-p53

Fertility and Sterility®

AAb-positive patients may benefit from different treatment
strategies. Diagnostic laparoscopy visually captures the
“static” snapshot of the peritoneal cavity, which is insufficient
given the growth-and-regress cycles of estrogen-driven endo-
metriotic lesions (63), and potentially misses out on regressed
lesions that would only recur in subsequent cycles. Autoanti-
bodies are stable over long periods (64, 65), even in the pres-
ence of low corresponding antigen levels (66). Anti-p53 AAb
can potentially be used to identify women with past episodes
of endometriosis but escape current diagnosis via laparos-
copy. A correlational study of serum p53 AAb with PF p53
AAb would provide information on whether serum p53 AAb
can be used as a predictive non-invasive marker to identify
subsets of endometriosis patients who would benefit from tar-
geted therapies.

A key strength of this study is the use of a protein array
that immobilizes the correct 3-dimensional folding of full-
length proteins (26). This has several important advantages
on the accuracy of our results, including the following: maxi-
mizing interactions between AAbs and immobilized proteins
while greatly minimizing the false positives that otherwise
arise from nonspecific binding of AAbs; a more accurate
reflection of in vivo functional citrullination; and the anti-
p53 AAbs being able to target both wild-type and mutant
p53 that have been reported in the PF of women with endome-
triosis (54-56). This study is the largest to date, which
identified local autoimmunity in the peritoneal cavity in
EM+ patients and EM— controls. Validation of previously
identified AAbs confirmed the identification of novel bona
fide AAb. Finally, and perhaps most importantly, the
advantage is the identification of AAbs in the PF,
considered the environment that is most proximal to lesions
and, thereby, capturing key cognate antigen-AAb interac-
tions in endometriosis.

Several studies of endometriosis, including this study,
have important limitations. First, the heterogeneous nature
of the disease, in clinical presentation, underlying pathogen-
esis and genetics, and demographics, coupled with a single
timepoint for sample collection, may have contributed to
the heterogeneous AAb profiles that potentially confounded
interpretation. Second, Although the employed AAb array
covered >1,600 proteins, autoimmunity that may be elicited
by other potential autoantigens, such as lipids, carbohydrates,
deoxyribonucleic acid, ribonucleic acid, and signaling and
hydrophobic proteins, were not captured. Finally, our analysis
was limited to a relatively small study population, and results
should be interpreted with caution unless confirmed in future
studies with greater granularity on specific clinical and/or de-
mographic features.

In summary, this study provides an expansive peritoneal
AADb landscape in patients with endometriosis and identified
p53 as a high-frequency AAD target that defined its associa-
tion in autoimmunity. These results suggest the causal infer-
ence of p53 and previously underappreciated pathways that
are linked to the autoimmunologic etiology of endometriosis,
with implications on novel therapeutic paradigms centered on
modulating these pathways and potentially immune cells to
explore endometriosis immunotherapies.
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