
Bioinformatics for Immunoprofiling with 
Protein Microarrays

Biomarker discovery has seen rapid growth over the last 
decade as researchers explore new techniques to 
identify disease as early as possible. New methods and 
tools have arisen, enabling high throughput discovery 
of highly specific and sensitive markers of disease. 
Immunoprofiling has grown from tools such as flow 
cytometry and protein microarrays where the milieu of 
immune cells, cytokines, antibodies, and other 
immunological markers can provide very specific, 
unique patient information.

Introduction 
While any biological molecule that can be objectively 
measured could be a potential biomarker, 
antibody-based biomarkers offer a unique opportunity 
to build a functional proteomics-based profile of the 
humoral immune repertoire, which is not possible 
through, for example, gene expression data or mass 
spectrometry-based proteomics.  Profiling antibodies 
allows for both functional profiling (improved 
understanding of potential disease etiology and/or 
progression) and clinical applications (predictive, 
diagnostic biomarker candidates and identifying 
potential pathogenic or protective antibodies). 
Discovering novel antibody signatures can be 
accomplished with protein microarrays.  Because 
protein arrays enable screening against hundreds or 
thousands of proteins, bioinformatics tools and 
expertise are necessary for acquiring, processing, 
analyzing, and interpreting antibody data. The workflow 
for this type of analysis is illustrated in Figure 1. 
Understanding the nuances of protein microarray data 
processing helps with data interpretation and the 
ensuing decisions regarding the next experiment. 

Protein microarrays are capable of generating 
thousands of analyzable variables and therefore offer an 
ideal platform for immune profiling.  Protein 
microarrays are constructed by printing expressed 
proteins onto glass slides as replicate spots distributed 
across an x by y array (Figure 2). Patient samples (most 
commonly serum) are then applied to the array. Once 
serum antibodies have bound their respective antigens 
(printed proteins), fluorescently labelled detection 
antibodies can be used to visualize the reaction. 
Historically, genomic arrays predate protein arrays and 
set the standards for array analysis.  However, over 
time, it became evident that protein arrays presented 
challenges absent in gene arrays. For example, gene 
arrays utilize hybridization, direct binding of labeled 
DNA to two complimentary DNA strands, with less 
opportunity for noise.  Protein arrays typically rely on 
indirect immunofluorescence detection, a technique 
with the potential for greater noise than in situ 
hybridization because there are multiple levels of 
antibody binding required for visualization.  Poorly 
designed protein arrays consisting of 
unfolded/misfolded, denatured, or linear proteins can

Collecting the Data  

All array data is computed in a similar manner. After the assay is 
run, the array is scanned using a microarray scanner. Protein 
microarrays often utilize indirect immunofluorescence to detect 
signal. Images are acquired, background is subtracted, and the 
data are normalized.  Data are visualized and then examined for 
statistical significance across subjects for each protein. If desired, 
predictive modeling can be performed to look for sets of 
antibodies that may be prognostic. Antibodies are excellent 
predictive biomarkers.

Figure 1. Protein Microarray Data Processing Workflow



exacerbate noise. Importantly, antibodies primarily 
recognize discontinuous amino acid sequences and 
charge that form during proper protein folding (Barlow 
et al., 1986; Muro et al., 1994).  Sengenics technology 
offers correctly folded proteins (Figures 2, 3).  The use of 
correctly folded proteins in the array results in higher 
affinity binding of serum antibodies to biologically 
relevant epitopes patterned on the surface of the target 
antigen, producing better signal to noise than other 
technologies.  In fact, this is the main reason other 
manufacturers struggle with protein arrays: noisy data 
due to non-specific binding (Tan et al., 1999). Data with 
better signal to noise requires less preprocessing prior 
to downstream analysis.   
  

The data are visualized in a grid of thousands of spots 
(also called features) of varying fluorescence, captured 
via digital imaging.  Computer software is used to 
extract these fluorescent intensities and to catalog 
them by their physical location on the array. Prior to 
analysis and interpretation, the data will be evaluated 
for quality.

Historically, protein microarrays were not properly designed to 
effectively capture antibodies that bind to conformational 
epitopes.  Antibody-antigen binding is highly sensitive to antigen 
shape and not sequence.  A. Sengenics technology overcomes this 
limitation by using full length, properly folded proteins on the 
microarray.  KREX patented protein folding technology enables 
expression and immobilization of correctly folded, fully functional 
proteins on a microarray slide.  Proteins are recombinantly 
expressed in frame with a biotin carboxyl carrier protein (BCCP). A 
misfolded or fragmented protein causes BCCP misfolding, and 
loss of the biotinylation site and binding to the streptavidin coated 
microarray slide cannot occur. Incorrectly folded proteins are 
washed away. This technology maintains conformational epitopes 
and ensures optimal antibody-epitope binding for the rigors of 
antibody screening. B. The Sengenics array assay workflow starts 
with sample application to the microarray followed by detection 
with a labeled secondary antibody, imaging and data analysis.

Figure 3. Sengenics Microarray Assay Workflow
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Four replicates of each protein are printed across four quadrants 
on the slide.  A) The slide is divided into four quadrants, each 
quadrant acting as a replicate array. B) The distribution of proteins 
on the Sengenics i-Ome microarray slide is representative of nearly 
600 cancer antigens as well as antigens involved in normal cellular 
physiology (Poulsen et al., 2021). Arrays can be customized with 
the desired type and number of proteins.

Figure 2. Example of the Sengenics i-Ome Microarray Design
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Data preprocessing involves examining the data for any 
overt abnormalities, removing background noise from 
each signal (by subtracting background from 
foreground signal), checking the level of precision 
between replicate spots from a given antigen 
(coefficient of variation), and performing between-array 
and between-experiment normalization. High quality 
microarray data visualization relies on careful handling 
and image acquisition processes where noise can be 
exacerbated by poor laboratory techniques. 

The median and net intensities are used for quality 
control to ensure data accuracy and integrity.  If, for 
example, the slide accidentally dries during processing, 
the median background intensities will be similar to the 
median foreground intensities. As a result, the net 
intensity will be very low or negative. Ideally, the 
distributions of the median intensities of the foreground 
and background plotted on the same graph should 
exhibit sharp peaks with no overlap.   Where there is 
overlap, this suggests a processing error. 

Control immunoglobulins are helpful in identifying 
printing errors or inconsistencies in reagents.  Serial 
dilutions of control immunoglobulins are spotted on the

array. The net intensities seen with their subsequent 
detection should increase linearly with increased 
concentration (Sumera et al., 2020).  The coefficient of 
determination, or R2 value, is used to determine 
linearity, with higher values indicating greater linearity 
and confirming reliable array printing.  Lower R2 values 
could indicate potential issues such as pipetting or array 
printing errors. Sengenics uses a very high R2 value of 
0.90 as a passing metric for quality control.  

Lastly, the coefficient of variation (CV), a measure of 
variability across samples, can be used to determine the 
technical reproducibility of the overall data.  The 
coefficient of variation is measured for the 
immunoglobulin dilution, a control probe (Cy3-BSA) 
and across each feature within the array, thus testing the 
quality of sample preparation and slide processing. The 
coefficient of variation for each of these measurements 
is often less than 5% with Sengenics arrays.  Many labs 
set a standard of 30% coefficient of variation or less to 
pass the data.  Features that fail to meet preset 
tolerances can be flagged in the dataset. Sengenics 
flags any antigens that have CV>20% and if more than 
1% of all antigens show CVs exceeding 20%, the 
sample is subject to further inspection.  Quality control 
can thus enable the researcher to identify problematic, 
inconsistent data from the array and make corrections 
where possible or re-run the sample. 

The next step in data preprocessing is data 
transformation.  Data transformation is a process of 
converting the data to a scale or range of numbers that 
are comparable and easier to handle and interpret in 
downstream analyses.  Commonly, the data are log 
transformed, with the Log2n being calculated for each 
net intensity, generating a data distribution that is closer 
to a normal distribution, enabling use of downstream 
parametric statistical methods.   

The final step in pre-processing is normalization.  The 
net intensity can vary from run to run and sample to 
sample for numerous reasons such as printing effects, 
lot differences in reagents, sample preparation 
differences, etc. (Mowoe et al., 2022; Smyth & Speed, 
2003).  Normalization standardizes the data across 
slides and experiments so that the data can be 
compared quantitatively without bias.  The simplest 
form of normalization is to calculate fold change from a 
reference, a type of percent change.  It is difficult to 
create a reference standard in protein arrays, so instead, 
each feature is compared with every other feature to 
produce a reference curve that simulates a standard. 
Features are moved towards the reference curve, either 
adding or subtracting intensity values.  Specific 
antibody signal is retained, while the overall net 
intensity differences across arrays are reduced. In one 
method that is commonly applied to microarrays, the 
data are normalized (between samples) using a 
technique called Locally Estimated Scatterplot 
Smoothing or LoESS Normalization (Ballman et al., 
2004; Liu et al., 2019; Smyth & Speed, 2003).  LoESS 
uses math derived from both linear and nonlinear 

Images are acquired by a laser microarray slide scanner 
(Figure 4). The signal intensity of the protein spot is 
called the foreground.  The area surrounding the 
foreground, where no protein is present, is called the 
background.  To improve data quality, it is common 
practice to calculate the median of the background and 
subtract this value from the median foreground intensity. 
This is a well-established filtering method called median 
filtering (Baxes, 1994) and  the resulting net intensities 
become the variable or feature associated with each 
protein for each subject (Babu, 2004; Sumera et al., 
2020). For example, if a subject’s serum contains a 
higher concentration of p53 antibody, the p53 protein 
spot on the array will have a higher net intensity.  
Conversely, if the subject’s serum contains very little or 
no p53 antibody, the net intensity will be lower.  

Data Preprocessing and 
Quality Control 

Example of feature staining from the Sengenics i-Ome technology. 
Pictured is a section illustrating a partial slide from the i-Ome array. 
Over 1600 different human proteins are printed on these slides. 

Figure 4. Example Image of Processed Microarray Slide



regression and is sometimes referred to as locally 
weighted polynomial regression (Figueira, 2020).  This 
technique is a type of internal normalization whereby 
the data within the array or pairs of arrays are used for 
the normalization. A scatterplot of net intensity averages 
is plotted against the difference in net intensities for the 
same feature.  A curve is fit to the scatterplot and 
becomes the factor for smoothing the data. The data 
are corrected for array-to-array differences while 
preserving actual biological differences. Sengenics 
processes arrays with LoESS normalization; however, it is 
important to note that LoESS cannot process negative 
intensity values.  A common pitfall in proteomics 
datasets is missing values.  Sengenics imputes missing 
or negative features by applying the mean minus two 
standard deviations to negative values.  This correction 
results in positive numbers so LoESS can be applied and 
essentially re-introduces missing values to the dataset to 
improve normalization.   LoESS normalization has been 
a very popular method for normalizing microarray data 
since 2003 (Liu et al., 2019; Smyth & Speed, 2003; Ting 
et al., 2009). 

Background subtraction, measures of quality control 
and data normalization as outlined above are common 
practice with microarray data.  While there are different 
approaches, all these elements are part of the 
pre-processing pipeline. There are multiple accepted 
techniques that can be applied to achieve the same 
goals. Nonetheless, all end users engage procedures to 
enhance the signal (background subtraction, 
normalization) and insure reliability (quality control) 
(Figure 1).  

Following data preprocessing and normalization, the 
next step is exploratory analysis via heatmaps and 
ordinations (Figure 5).  Heat maps are plots in which the 
log2 of the net intensities, or transformed data, for 
specific antigens and specific samples are binned 
according to value, each bin representing a small range 
of contiguous values in ascending order from 0 to max 
(Figure 6).   The data are pseudo-colored. High and low 
values are represented by different colors.  A heat map 
is a visualization of the raw data, and for genomics data, 
has been very helpful in quickly identifying gene 
expression changes.  For proteomics data, the heat 
map may be more subtle, and clear differences may 
sometimes be difficult to discern by visual inspection, 
especially across different arrays.  

Heat maps colorize raw data for easy visualization. 
However, the heat map is linear in that all the values of 
all the conditions of all the samples are displayed in one 
flat picture as single units.  An array with 1600 proteins 
and two sample sets of 120 subjects each will have a 
heatmap with 384,000 points! Relationships can be 
hard to locate.  Most often researchers will only plot a 
subset of the data.  Deciding what to plot, and where 
the most valuable data lie is assisted with ordination, a

statistical procedure designed to re-plot 
multidimensional data in 2-dimensional space. The 
idea is to simplify the visualization of the data without 
losing any of the relationships within the data. A 
popular ordination technique is the t-distributed 

Examining the Data 

Heat map illustrating antibody penetrance fold change among 
patients receiving adalimumab treatment.  Patients can be 
differentiated by the presence of an adalimumab antibody in their 
sera, date of observation and response to therapy (x-axis).  In this 
example, TROVE2 was observed in poor responding patients at 
baseline, before treatment started.  The data indicate that 
antibodies such as TROVE2 and TPM1 may be valuable biomarkers 
for predicting patient outcomes to adalimumab therapy (Chen et 
al., 2021).

Figure 5. Example of a Protein Heatmap After Data Processing

tSNE can be used to graphically visualize different antibody 
biomarkers among subjects of different age groups. Antibodies 
that commonly occur among elderly patients are clustered into 
unique groups following tSNE application (unpublished data). 

Figure 6. tSNE illustrates Unique Antibody Biomarkers Among 
Age Groups 



stochastic neighbor embedding or tSNE technique 
invented in 2008 by Laurens van der Maaten and 
Gregory Hinton (van der Maaten & Hinton, 2008).  The 
value of this ordination technique is that it accurately 
clusters related multivariate data in two-dimensional 
space (Figure 6). In terms of proteomics, tSNE can help 
the researcher visualize related feature data in a simple 
scatter plot. For example, if you have data from healthy 
controls and rheumatoid arthritis patients, the tSNE will 
identify and segregate related feature data, if there are 
any.  The value of tSNE plots lies in representing 
similarities amongst high dimensional data sets. The 
information obtained from tSNE plots can be used to 
inform further statistical analyses. This type of 
visualization is new compared to heatmaps and scatter 
plots and is gaining popularity in proteomics.  Other 
ordination techniques are available. These are 
visualization and graphing tools, the data are not 
processed or changed. 

To quickly identify important features in the population, 
the data can be visualized on a volcano plot (Figure 7) 
(Cui & Churchill, 2003). To express the data clearly, 
making it easy to visualize both fold change in feature 
and significance, the p-values are transformed into the 
negative Log10 of the p-value such that higher numbers 
on the Y-axis indicate greater significance.  Features 
with high significance and high fold change are 
considered hits, typically a p-value <0.01 or <0.05 and 
a fold-change >1.5 or 2 depending on the experimental 
set up.  The statistics applied to protein array data 
continues to evolve providing greater power and 
greater sensitivity for better pipelines in drug 
development and greater success in personalized 
medicine. 

To focus on productive proteomics data, especially 
when analyzing antibody data, it is helpful to remove or 
ignore features with little information.  A technique 
developed by Sengenics called Negative Control 
Filtering identifies a baseline low level net intensity for 
the array using control proteins that, by design, are not 
meant to react with sera.  Features with intensity values 
that correlate closely with the negative controls across 
the samples possess no meaningful information and 
are not included in downstream analyses.  Negative 
control filtering ensures that true signals are evaluated 
for statistical significance.  In short, every Sengenics 
array contains positive (Cy3-BSA) and negative controls 
(negative control proteins).  This is a standard assay 
design.

The moderated t-test applied to linear modeling is a 
powerful statistic for observing significant differences 
in the differential expression of protein microarray data 
between groups.  It is similar to a regular t-test except

Proteomics array data have numerous statistical 
challenges.  Protein microarray data have many unique 
characteristics that can increase error and reduce 
power such as missing observations (Ting et al., 2009), 
disparate intensity levels across samples, post 
translational modification of proteins, and handling 
and processing inconsistencies.  Consequently, 
standard t-tests are not sufficient for determining 
statistical significance.  In recent years, statistical 
methods have been developed to specifically address 
protein array analysis. Linear modeling is more flexible, 
easier to conduct and more robust than a standard 
t-test for proteomics data.  Significance testing of the 
linear model is best accomplished with a moderated 
t-test (Ting et al., 2009).    With proteomics data, the 
input for statistical analyses begins with the 
transformed intensity values of each feature, the Log2 
of the net intensity.  Individual sample features are 
compared across samples using an expression ratio 
where the transformed net intensity values of each 
feature are divided by the mean transformed net 
intensities of the control samples, producing an 
Individual Fold Change for each feature (IFC).  The IFC, 
however, does not consider population penetrance. 
Penetrance Fold-Change (PFC) incorporates the 
magnitude of the expression ratio as well as population 
occurrence into the analyses thereby identifying 
relevant features within the population. The PFC uses a 
cut-off threshold of the IFC data ≥2 to identify 
meaningful features and then a frequency or 
penetrance cutoff of greater than 10% to identify 
subjects with those features.  PFC can be used to 
assess both frequency and magnitude of the 
occurrence of antibody/antigen binding, thus 
determining how often an antibody is present in the 
group of interest (Patel et al., 2022; Sumera et al., 
2020). This is especially useful for smaller sample sizes 
when some subjects express a strong phenotype that 
could be missed by looking at only the IFC.
 

Analyzing the data 

A Volcano Plot of data obtained from Parkinson’s patients with or 
without Helicobacter pylori. The plot shows significant changes, 
both positive and negative, in the Penetrance Fold Change of 13 
different antibodies.  Microtubule associated protein 4 (MAP4) 
antibodies, for example, are significantly decreased in 
Helicobacter pylori infected Parkinson’s patients (red circle) while 
FK506 Binding Protein 3 (FKBP3) antibodies, a protein folding 
chaperone, are significantly increased (green circle) when 
compared with non-Helicobacter pylori infected Parkinson’s 
patients (Suwarnalata et al., 2016).

Figure 7. Volcano Plot Enables Quick Visualization of Significant 
Data



Machine learning with array data is used to make 
multiple comparisons of feature data against a 
response. In the case of antibodies, the machine 
“learns” the association of various antibodies with the 
response.  The output will be a short list of antibodies 
with the greatest discriminative and/or predictive 
power from amongst the original array of proteins.  For 
example, the presence of multiple cancer testis 
antigens is associated with poor prognosis among 
patients with non-small cell lung cancer (Patel et al., 
2022).  Usually, machine learning is conducted on a 
“training” cohort of individuals.  There are numerous 
algorithms to select from, many based on decision 
trees.  The random decision forests test is one of the 
most popular for array data.  The test places the data 
into randomly organized parallel decision trees, each 
matrix deducing an answer or answers through a serial 
decision-making process.  Once each tree returns a 
decision, the final answer is determined based off the 
most common answer deduced by each tree, i.e., a 
majority vote. The top several “voted” variables 
associated with the response are considered highly 
predictive for that response.  This process is known as 
ensemble learning with the highest-ranking features 
determined by majority vote.    

A significant panel, or subset, is often examined using 
the Receiver Operating Characteristic (ROC) curve, a 
data plot that calculates the sensitivity and specificity 
of the panel. A ROC curve plots the rates of true 
positives, subjects positive for a panel/classifier who 
respond, versus true negatives, subjects not positive 
for the panel/classifier who did not respond. The y-axis 
plots the observations that were truly positive.  This is 
the sensitivity of the observations.  The x-axis plots the 
observations that were truly false and is the specificity 
of the observations (Figure 8). A quickly rising curve 
indicates the classifier possesses high sensitivity and 
high specificity for the response. The Area Under the 
Curve (AUC) determines the overall strength of the 
model, higher AUC values indicate a stronger 
association between the variables, in this case an 
antibody panel and future outcome or prognosis. An 
AUC of 1.0 indicates the strongest association between 
the variables whereas an AUC of 0.5 indicates a 
random model with no predictive value. ROC analysis 
is conducted on both the training and validation 
cohorts. If the antibody panel (classifier) is suitably 
strong, then the AUCs, sensitivities and specificities of 
the validation cohort will be very similar to those of the 
training cohort. This helps confirm the linear modeling 
data identifying a predictive biomarker panel of 
antibodies.
  

in how the error is managed.  Rather than using 
standard error per observation, the moderated t-test 
uses a pooled estimate for the entire array. This reduces 
the likelihood that proteins with small variance appear 
significant while also raising the power by increasing 
the allowable observations (degrees of freedom) (Ting 
et al., 2009). Further, a standard t-test assumes all 
observations are independent, but a moderated t-Test 
does not.  ANOVA and linear regression are sometimes 
also conducted, depending on the assay design.  
ANOVA can be used to assess a significant difference 
across the all the planned comparisons. A post-hoc test 
can be used to look for specific differences between 
groups.  Linear regression can also be used to model 
the relationship between variables and potentially 
predict outcomes.

A powerful emerging attribute of antibody profiling is 
the ability to use antibody panels versus individual 
markers to attain higher predictive value (Bizzaro, 2007; 
Kathrikolly et al., 2022). A panel of multiple markers of 
disease improves the ability to accurately diagnose and 
predict the outcome of the disease.  It is rare to find a 
single antibody representative of a disease in all cases. 
Additionally, since some antibodies are produced to 
aberrantly expressed or aberrantly modified forms of 
proteins, pathway linkages identified between 
biomarkers can add mechanistic insight on underlying 
disease processes. Identifying a panel, however, 
requires adequate sample size to accommodate the 
large number of features and comparisons.  Due to the 
high signal to noise ratio of Sengenics microarrays, 
variability is low and the recommended number of 
samples per group is comparatively low because the 
data are more robust.  Sample number is dictated by 
experimental goals. Employing machine learning to 
identify patterns of autoantibody expression predictive 
of disease outcomes or therapeutic response typically 
requires more samples. 

Protein microarrays are very powerful tools.  There are 
many more proteins than genes. Proteins may be 
present while genes are downregulated or not 
expressed. Protein expression reflects present activities 
within the individual and proteins interact directly with 
one another so identification of one protein may link to 
others. Antibodies are a special breed of protein.  Since 
the 1960’s, it has been known that antibodies predate 
autoimmune diseases (Koffler et al., 1971; Kunkel & 
Tan, 1964; Tan, 1997; Tan & Kunkel, 1966; Tan et al., 
1966).  In the 1980’s, it was determined that rheumatoid 
factor predated rheumatoid arthritis symptoms by an 
average of 4 years (Aho et al., 1991; Bizzaro, 2007; del 
Puente et al., 1988).  Consequently, antibodies have 
great predictive potential, and have been examined in 
other diseases such as cancer (Patel et al., 2022) and 
neurological disorders (Wang et al., 2020) where

antibody panels continue to demonstrate prognostic 
value. Running experiments to identify predictive 
antibodies from an array with 1000’s of proteins 
necessitates predictive statistics and machine learning.  

Making Predictions from 
the data 
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From the 1990’s, as high throughput technologies 
developed, the amount of data to be analyzed 
became challenging to manage and interpret.  
Microarrays are capable of providing thousands of 
data points across subjects for gene expression, 
protein expression, and RNA expression, resulting in 
thousands of comparisons.  While genomic data led 
the way with new visualization and statistical models, 
evaluation of protein array data did not always fit the 
genomic models.  Especially for proteomics, the 
quality of the data must be high, or visualization, 
statistical analyses and interpretation suffer. 
Consequently, exemplary lab techniques with careful 
consideration of each step in the analysis process 
must be implemented. Sengenics technology has 
been developed with each step in mind. The 
microarrays focus on capturing antibody signatures. 
Antibodies are proven prognosticators that are 
directly related to the disease state.  The proteins on 
Sengenics arrays are fully folded and functional, 
retaining shape for accurate and specific binding to 
sera antibodies thus resulting in high signal to noise 
on the array.  As a result, pre- and downstream 
processing of the data is more reliable. These steps 
control the variables that have previously challenged 
protein micro array data interpretation. With quality 
processing and modern statistical analysis, this new 
generation of antibody profiling will accelerate 
biomarker discovery, and precision medicine.   

Concluding Remarks 

References

ROC curves for an antibody biomarker panel predictive of 
non-small cell lung cancer prognosis in both training and validation 
cohorts. This panel returned 13 novel antibodies with a high 
strength of reliability (AUC) in both cohorts. P value indicates no 
significant difference in the performance of this model between 
cohorts. AUC 95% confidence intervals are displayed within 
brackets (Patel et al., 2022).

Figure 8. Receiver Operating Characteristic Analysis on 
Antibodies Predictive of Patient Prognosis

20. Patel, A. J., Tan, T. M., Richter, A. G., Naidu, B., Blackburn, J. M., 
& Middleton, G. W. (2022). A highly predictive autoantibody-based 
biomarker panel for prognosis in early-stage NSCLC with potential 
therapeutic implications. Br J Cancer, 126(2), 238-246. 
https://doi.org/10.1038/s41416-021-01572-x 
21. Poulsen, T. B. G., Damgaard, D., Jorgensen, M. M., Senolt, L., 
Blackburn, J. M., Nielsen, C. H., & Stensballe, A. (2020). Identification 
of Novel Native Autoantigens in Rheumatoid Arthritis. Biomedicines, 
8(6). https://doi.org/10.3390/biomedicines8060141 
22. Poulsen, T. B. G., Damgaard, D., Jorgensen, M. M., Senolt, L., 
Blackburn, J. M., Nielsen, C. H., & Stensballe, A. (2021). Identification 
of potential autoantigens in anti-CCP-positive and anti-CCP-negative 
rheumatoid arthritis using citrulline-specific protein arrays. Sci Rep, 
11(1), 17300. https://doi.org/10.1038/s41598-021-96675-z 
23. Sexauer, D., Gray, E., & Zaenker, P. (2022). Tumour- associated 
autoantibodies as prognostic cancer biomarkers- a review. 
Autoimmun Rev, 21(4), 103041. https://doi.org/10.1016/j.autrev. 
2022.103041 
24. Smyth, G. K., & Speed, T. (2003). Normalization of cDNA 
microarray data. Methods, 31(4), 265-273. https://doi.org/ 
10.1016/s1046-2023(03)00155-5 
25. Sumera, A., Anuar, N. D., Radhakrishnan, A. K., Ibrahim, H., Rutt, 
N. H., Ismail, N. H., Tan, T. M., & Baba, A. A. (2020). A Novel Method 
to Identify Autoantibodies against Putative Target Proteins in Serum 
from beta-Thalassemia Major: A Pilot Study. Biomedicines, 8(5). 
https://doi.org/10.3390/biomedicines8050097 
26. Suwarnalata, G., Tan, A. H., Isa, H., Gudimella, R., Anwar, A., 
Loke, M. F., Mahadeva, S., Lim, S. Y., & Vadivelu, J. (2016). 
Augmentation of Autoantibodies by Helicobacter pylori in 
Parkinson's Disease Patients May Be Linked to Greater Severity. PLoS 
One, 11(4), e0153725. https://doi.org/10.1371/journal.pone. 
0153725 
27. Tan, E. M. (1997). Autoantibodies and autoimmunity: a 
three-decade perspective. A tribute to Henry G. Kunkel. Ann N Y 
Acad Sci, 815, 1-14. https://doi.org/10.1111/j.1749-6632.1997. 
tb52040.x 
28. Tan, E. M., & Kunkel, H. G. (1966). Characteristics of a soluble 
nuclear antigen precipitating with sera of patients with systemic lupus 
erythematosus. J Immunol, 96(3), 464-471. https://www.ncbi.nlm.nih. 
gov/pubmed/5932578

29. Tan, E. M., Schur, P. H., Carr, R. I., & Kunkel, H. G. (1966). 
Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of 
patients with systemic lupus erythematosus. J Clin Invest, 45(11), 
1732-1740. https://doi.org/10.1172/JCI105479 
30. Tan, E. M., Smolen, J. S., McDougal, J. S., Butcher, B. T., Conn, 
D., Dawkins, R., Fritzler, M. J., Gordon, T., Hardin, J. A., Kalden, J. R., 
Lahita, R. G., Maini, R. N., Rothfield, N. F., Smeenk, R., Takasaki, Y., 
van Venrooij, W. J., Wiik, A., Wilson, M., & Koziol, J. A. (1999). A 
critical evaluation of enzyme immunoassays for detection of 
antinuclear autoantibodies of defined specificities. I. Precision, 
sensitivity, and specificity. Arthritis Rheum, 42(3), 455-464. 
https://doi.org/10.1002/1529-0131(199904)42:3<455::AID-ANR10>
3.0.CO;2-3 
31. Ting, L., Cowley, M. J., Hoon, S. L., Guilhaus, M., Raftery, M. J., 
& Cavicchioli, R. (2009). Normalization and Statistical Analysis of 
Quantitative Proteomics Data Generated by Metabolic Labeling. 
Molecular & Cellular Proteomics, 8(10), 2227-2242. https://doi.org/ 
10.1074/mcp.m800462-mcp200 
32. van der Maaten, L., & Hinton, G. (2008). Visualizing data using 
t-SNE. The Journal of Machine Learning Research, 9(2579-2605), 85. 
33. Vantaggiato, L., Cameli, P., Bergantini, L., d'Alessandro, M., 
Shaba, E., Carleo, A., Di Giuseppe, F., Angelucci, S., Sebastiani, G., 
Dotta, F., Bini, L., Bargagli, E., & Landi, C. (2022). Serum Proteomic 
Profile of Asthmatic Patients after Six Months of Benralizumab and 
Mepolizumab Treatment. Biomedicines, 10(4). https://doi.org/ 
10.3390/biomedicines10040761 
34. Wang, B. Z., Zailan, F. Z., Wong, B. Y. X., Ng, K. P., & Kandiah, N. 
(2020). Identification of novel candidate autoantibodies in 
Alzheimer's disease. Eur J Neurol, 27(11), 2292-2296. 
https://doi.org/10.1111/ene.14290 
35. Zaenker, P., & Ziman, M. R. (2013). Serologic autoantibodies as 
diagnostic cancer biomarkers--a review. Cancer Epidemiol 
Biomarkers Prev, 22(12), 2161-2181. https://doi.org/10.1158/ 
1055-9965.EPI-13-0621 
36. Zhang, R., Siu, M. K. Y., Ngan, H. Y. S., & Chan, K. K. L. (2022). 
Molecular Biomarkers for the Early Detection of Ovarian Cancer. Int J 
Mol Sci, 23(19). https://doi.org/10.3390/ijms231912041 



1. Aho, K., Heliovaara, M., Maatela, J., Tuomi, T., & Palosuo, T. 
(1991). Rheumatoid factors antedating clinical rheumatoid arthritis. J 
Rheumatol, 18(9), 1282-1284. https://www.ncbi.nlm.nih.gov/ 
pubmed/1757925 
2. Aziz, F., & Blackburn, J. (2018). Autoantibody-Based Diagnostic 
Biomarkers:Technological Approaches to Discovery and Validation. 
In W. A. Khan (Ed.), Autoantibodies and Cytokines (pp. 159-188). 
IntechOpen. https://doi.org/10.5772/intechopen.75200 
3. Babu, M. M. (2004). Introduction to Microarray Data Analysis. In 
R. Grant (Ed.), Computational Genomics - Theory and Application 
(pp. 225-249). Horizon Bioscience. https://www.mrc-lmb.cam.ac.uk/ 
genomes/madanm/microarray/chapter-final.pdf 
4. Ballman, K. V., Grill, D. E., Oberg, A. L., & Therneau, T. M. 
(2004). Faster cyclic loess: normalizing RNA arrays via linear models. 
Bioinformatics, 20(16), 2778-2786. https://doi.org/10.1093/ 
bioinformatics/bth327 
5. Barlow, D. J., Edwards, M. S., & Thornton, J. M. (1986). 
Continuous and discontinuous protein antigenic determinants. 
Nature, 322(6081), 747-748. https://doi.org/10.1038/322747a0 
6. Baxes, G. (1994). Digital Image Processing (1st ed.). John Wiley 
and Sons, Inc. 
7. Bizzaro, N. (2007). Autoantibodies as predictors of disease: the 
clinical and experimental evidence. Autoimmun Rev, 6(6), 325-333. 
https://doi.org/10.1016/j.autrev.2007.01.006 
8. Chen, P. K., Lan, J. L., Chen, Y. M., Chen, H. H., Chang, S. H., 
Chung, C. M., Rutt, N. H., Tan, T. M., Mamat, R. N. R., Anuar, N. D., 
Blackburn, J. M., & Chen, D. Y. (2021). Anti-TROVE2 Antibody 
Determined by Immune-Related Array May Serve as a Predictive 
Marker for Adalimumab Immunogenicity and Effectiveness in RA. J 
Immunol Res, 2021, 6656121. https://doi.org/10.1155/2021/ 
6656121 
9. Cui, X., & Churchill, G. A. (2003). Statistical tests for differential 
expression in cDNA microarray experiments. Genome Biol, 4(4), 210. 
https://doi.org/10.1186/gb-2003-4-4-210 
10. Damoiseaux, J., Andrade, L. E., Fritzler, M. J., & Shoenfeld, Y. 
(2015). Autoantibodies 2015: From diagnostic biomarkers toward 
prediction, prognosis and prevention. Autoimmun Rev, 14(6), 
555-563. https://doi.org/10.1016/j.autrev.2015.01.017 
11. del Puente, A., Knowler, W. C., Pettitt, D. J., & Bennett, P. H. 
(1988). The incidence of rheumatoid arthritis is predicted by 
rheumatoid factor titer in a longitudinal population study. Arthritis 
Rheum, 31(10), 1239-1244. https://doi.org/10.1002/art.1780311004 
12. Duarte, J. S., J; Mulder, N; Blackburn, J. (2013). Protein 
Functional Microarrays: Design, Use and Bioinformatic Analysis in 
Cancer Biomarker Discovery and Quantitation. In X. Wang (Ed.), 
Bioinformatics of Human Proteomics (pp. 39-74). Springer 
Science+Business Media Dordrecht. 
13. Figueira, J. P. (2020, 07/01/2020). LOESS. Tawrds Data Science. 
Retrieved 01/17/2023 from https://towardsdatascience.com 
/loess-373d43b03564
14. Kathrikolly, T., Nair, S. N., Mathew, A., Saxena, P. P. U., & Nair, S. 
(2022). Can serum autoantibodies be a potential early detection 
biomarker for breast cancer in women? A diagnostic test accuracy 
review and meta-analysis. Syst Rev, 11(1), 215. https://doi.org/ 
10.1186/s13643-022-02088-y 
15. Koffler, D., Carr, R., Agnello, V., Thoburn, R., & Kunkel, H. G. 
(1971). Antibodies to polynucleotides in human sera: antigenic 
specificity and relation to disease. J Exp Med, 134(1), 294-312. 
https://doi.org/10.1084/jem.134.1.294 
16. Kunkel, H. G., & Tan, E. M. (1964). Autoantibodies and Disease. 
Adv Immunol, 27, 351-395. https://doi.org/10.1016/ 
s0065-2776(08)60711-7 
17. Liu, X., Li, N., Liu, S., Wang, J., Zhang, N., Zheng, X., Leung, K. 
S., & Cheng, L. (2019). Normalization Methods for the Analysis of 
Unbalanced Transcriptome Data: A Review. Front Bioeng Biotechnol, 
7, 358. https://doi.org/10.3389/fbioe.2019.00358 
18. Mowoe, M. O., Garnett, S., Lennard, K., Talbot, J., Townsend, P., 
Jonas, E., & Blackburn, J. M. (2022). Pro-MAP: a robust pipeline for 
the pre-processing of single channel protein microarray data. BMC 
Bioinformatics, 23(1), 534. https://doi.org/10.1186/s12859- 
022-05095-x 
19. Muro, Y., Tsai, W. M., Houghten, R., & Tan, E. M. (1994). 
Synthetic compound peptide simulating antigenicity of 
conformation-dependent autoepitope. J Biol Chem, 269(28), 
18529-18534. https://www.ncbi.nlm.nih.gov/pubmed/7518436 

20. Patel, A. J., Tan, T. M., Richter, A. G., Naidu, B., Blackburn, J. M., 
& Middleton, G. W. (2022). A highly predictive autoantibody-based 
biomarker panel for prognosis in early-stage NSCLC with potential 
therapeutic implications. Br J Cancer, 126(2), 238-246. 
https://doi.org/10.1038/s41416-021-01572-x 
21. Poulsen, T. B. G., Damgaard, D., Jorgensen, M. M., Senolt, L., 
Blackburn, J. M., Nielsen, C. H., & Stensballe, A. (2020). Identification 
of Novel Native Autoantigens in Rheumatoid Arthritis. Biomedicines, 
8(6). https://doi.org/10.3390/biomedicines8060141 
22. Poulsen, T. B. G., Damgaard, D., Jorgensen, M. M., Senolt, L., 
Blackburn, J. M., Nielsen, C. H., & Stensballe, A. (2021). Identification 
of potential autoantigens in anti-CCP-positive and anti-CCP-negative 
rheumatoid arthritis using citrulline-specific protein arrays. Sci Rep, 
11(1), 17300. https://doi.org/10.1038/s41598-021-96675-z 
23. Sexauer, D., Gray, E., & Zaenker, P. (2022). Tumour- associated 
autoantibodies as prognostic cancer biomarkers- a review. 
Autoimmun Rev, 21(4), 103041. https://doi.org/10.1016/j.autrev. 
2022.103041 
24. Smyth, G. K., & Speed, T. (2003). Normalization of cDNA 
microarray data. Methods, 31(4), 265-273. https://doi.org/ 
10.1016/s1046-2023(03)00155-5 
25. Sumera, A., Anuar, N. D., Radhakrishnan, A. K., Ibrahim, H., Rutt, 
N. H., Ismail, N. H., Tan, T. M., & Baba, A. A. (2020). A Novel Method 
to Identify Autoantibodies against Putative Target Proteins in Serum 
from beta-Thalassemia Major: A Pilot Study. Biomedicines, 8(5). 
https://doi.org/10.3390/biomedicines8050097 
26. Suwarnalata, G., Tan, A. H., Isa, H., Gudimella, R., Anwar, A., 
Loke, M. F., Mahadeva, S., Lim, S. Y., & Vadivelu, J. (2016). 
Augmentation of Autoantibodies by Helicobacter pylori in 
Parkinson's Disease Patients May Be Linked to Greater Severity. PLoS 
One, 11(4), e0153725. https://doi.org/10.1371/journal.pone. 
0153725 
27. Tan, E. M. (1997). Autoantibodies and autoimmunity: a 
three-decade perspective. A tribute to Henry G. Kunkel. Ann N Y 
Acad Sci, 815, 1-14. https://doi.org/10.1111/j.1749-6632.1997. 
tb52040.x 
28. Tan, E. M., & Kunkel, H. G. (1966). Characteristics of a soluble 
nuclear antigen precipitating with sera of patients with systemic lupus 
erythematosus. J Immunol, 96(3), 464-471. https://www.ncbi.nlm.nih. 
gov/pubmed/5932578

29. Tan, E. M., Schur, P. H., Carr, R. I., & Kunkel, H. G. (1966). 
Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of 
patients with systemic lupus erythematosus. J Clin Invest, 45(11), 
1732-1740. https://doi.org/10.1172/JCI105479 
30. Tan, E. M., Smolen, J. S., McDougal, J. S., Butcher, B. T., Conn, 
D., Dawkins, R., Fritzler, M. J., Gordon, T., Hardin, J. A., Kalden, J. R., 
Lahita, R. G., Maini, R. N., Rothfield, N. F., Smeenk, R., Takasaki, Y., 
van Venrooij, W. J., Wiik, A., Wilson, M., & Koziol, J. A. (1999). A 
critical evaluation of enzyme immunoassays for detection of 
antinuclear autoantibodies of defined specificities. I. Precision, 
sensitivity, and specificity. Arthritis Rheum, 42(3), 455-464. 
https://doi.org/10.1002/1529-0131(199904)42:3<455::AID-ANR10>
3.0.CO;2-3 
31. Ting, L., Cowley, M. J., Hoon, S. L., Guilhaus, M., Raftery, M. J., 
& Cavicchioli, R. (2009). Normalization and Statistical Analysis of 
Quantitative Proteomics Data Generated by Metabolic Labeling. 
Molecular & Cellular Proteomics, 8(10), 2227-2242. https://doi.org/ 
10.1074/mcp.m800462-mcp200 
32. van der Maaten, L., & Hinton, G. (2008). Visualizing data using 
t-SNE. The Journal of Machine Learning Research, 9(2579-2605), 85. 
33. Vantaggiato, L., Cameli, P., Bergantini, L., d'Alessandro, M., 
Shaba, E., Carleo, A., Di Giuseppe, F., Angelucci, S., Sebastiani, G., 
Dotta, F., Bini, L., Bargagli, E., & Landi, C. (2022). Serum Proteomic 
Profile of Asthmatic Patients after Six Months of Benralizumab and 
Mepolizumab Treatment. Biomedicines, 10(4). https://doi.org/ 
10.3390/biomedicines10040761 
34. Wang, B. Z., Zailan, F. Z., Wong, B. Y. X., Ng, K. P., & Kandiah, N. 
(2020). Identification of novel candidate autoantibodies in 
Alzheimer's disease. Eur J Neurol, 27(11), 2292-2296. 
https://doi.org/10.1111/ene.14290 
35. Zaenker, P., & Ziman, M. R. (2013). Serologic autoantibodies as 
diagnostic cancer biomarkers--a review. Cancer Epidemiol 
Biomarkers Prev, 22(12), 2161-2181. https://doi.org/10.1158/ 
1055-9965.EPI-13-0621 
36. Zhang, R., Siu, M. K. Y., Ngan, H. Y. S., & Chan, K. K. L. (2022). 
Molecular Biomarkers for the Early Detection of Ovarian Cancer. Int J 
Mol Sci, 23(19). https://doi.org/10.3390/ijms231912041 


